Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'networks':
Найдено статей: 119
  1. Марченко Л.Н., Косенок Я.А., Гайшун В.Е., Бруттан Ю.В.
    Моделирование реологических характеристик водных суспензий на основе наноразмерных частиц диоксида кремния
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1217-1252

    Реологическое поведение водных суспензий на основе наноразмерных частиц диоксида кремния сильно зависит от динамической вязкости, которая непосредственно влияет на применение наножидкостей. Целью данной работы являются разработка и валидация моделей для прогнозирования динамической вязкости от независимых входных параметров: концентрации диоксида кремния SiO2, кислотности рН, а также скорости сдвига $\gamma$. Проведен анализ влияния состава суспензии на ее динамическую вязкость. Выявлены статистически однородные по составу группы суспензий, в рамках которых возможна взаимозаменяемость составов. Показано, что при малых скоростях сдвига реологические свойства суспензий существенно отличаются от свойств, полученных на более высоких скоростях. Установлены значимые положительные корреляции динамической вязкости суспензии с концентрацией SiO2 и кислотностью рН, отрицательные — со скоростью сдвига $\gamma$. Построены регрессионные модели с регуляризацией зависимости динамической вязкости $\eta$ от концентраций SiO2, NaOH, H3PO4, ПАВ (поверхностно-активное вещество), ЭДА (этилендиамин), скорости сдвига $\gamma$. Для более точного прогнозирования динамической вязкости были обучены модели с применением алгоритмов нейросетевых технологий и машинного обучения (многослойного перцептрона MLP, сети радиальной базисной функции RBF, метода опорных векторов SVM, метода случайного леса RF). Эффективность построенных моделей оценивалась с использованием различных статистических метрик, включая среднюю абсолютную ошибку аппроксимации (MAE), среднюю квадратическую ошибку (MSE), коэффициент детерминации $R^2$, средний процент абсолютного относительного отклонения (AARD%). Модель RF показала себя как лучшая модель на обучающей и тестовой выборках. Определен вклад каждой компоненты в построенную модель, показано, что наибольшее влияние на динамическую вязкость оказывает концентрация SiO2, далее кислотность рН и скорость сдвига $\gamma$. Точность предлагаемых моделей сравнивается с точностью ранее опубликованных в литературе моделей. Результаты подтверждают, что разработанные модели можно рассматривать как практический инструмент для изучения поведения наножидкостей, в которых используются водные суспензии на основе наноразмерных частиц диоксида кремния.

    Marchanko L.N., Kasianok Y.A., Gaishun V.E., Bruttan I.V.
    Modeling of rheological characteristics of aqueous suspensions based on nanoscale silicon dioxide particles
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1217-1252

    The rheological behavior of aqueous suspensions based on nanoscale silicon dioxide particles strongly depends on the dynamic viscosity, which affects directly the use of nanofluids. The purpose of this work is to develop and validate models for predicting dynamic viscosity from independent input parameters: silicon dioxide concentration SiO2, pH acidity, and shear rate $\gamma$. The influence of the suspension composition on its dynamic viscosity is analyzed. Groups of suspensions with statistically homogeneous composition have been identified, within which the interchangeability of compositions is possible. It is shown that at low shear rates, the rheological properties of suspensions differ significantly from those obtained at higher speeds. Significant positive correlations of the dynamic viscosity of the suspension with SiO2 concentration and pH acidity were established, and negative correlations with the shear rate $\gamma$. Regression models with regularization of the dependence of the dynamic viscosity $\eta$ on the concentrations of SiO2, NaOH, H3PO4, surfactant (surfactant), EDA (ethylenediamine), shear rate γ were constructed. For more accurate prediction of dynamic viscosity, the models using algorithms of neural network technologies and machine learning (MLP multilayer perceptron, RBF radial basis function network, SVM support vector method, RF random forest method) were trained. The effectiveness of the constructed models was evaluated using various statistical metrics, including the average absolute approximation error (MAE), the average quadratic error (MSE), the coefficient of determination $R^2$, and the average percentage of absolute relative deviation (AARD%). The RF model proved to be the best model in the training and test samples. The contribution of each component to the constructed model is determined. It is shown that the concentration of SiO2 has the greatest influence on the dynamic viscosity, followed by pH acidity and shear rate γ. The accuracy of the proposed models is compared to the accuracy of models previously published. The results confirm that the developed models can be considered as a practical tool for studying the behavior of nanofluids, which use aqueous suspensions based on nanoscale particles of silicon dioxide.

  2. Богданов А.В., Ганкевич И.Г., Гайдучок В.Ю., Южанин Н.В.
    Запуск приложений на гибридном кластере
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 475-483

    Гибридный кластер подразумевает использование вычислительных ресурсов с различными архитектурами. Как правило, в таких системах используется CPU распространенной архитектуры (например, x86_64) и GPU (например, NVIDIA CUDA). Создание и эксплуатация подобного кластера требует определенного опыта: для того чтобы задействовать все вычислительные мощности такой системы и получить существенное ускорение на задачах, требуется учесть множество факторов. К таким факторам относятся как характеристики оборудования (например, особенности сетевой инфраструктуры, хранилища, архитектуры GPU), так и характеристики программного обеспечения (например, реализация MPI, библиотеки для работы с GPU). Таким образом для эффективных научных расчетов на подобных системах требуется помнить о характеристиках ускорителя (GPU), особенностях программного обеспечения, характеристиках задачи и о многих других факторах.

    В этой статье анализируются достоинства и недостатки гибридных вычислений. Будут приведены результаты запуска некоторых тестов и научных приложений, использующих GPGPU. Основное внимание уделено программных продуктах с открытым исходным кодом, которые поддерживают работу с GPGPU.

    Существует несколько подходов для организации гетерогенных вычислений. В данной статье мы рассмотрим приложения, использующие CUDA и OpenCL. CUDA довольно часто используется в подобных гибридных системах, в то время как переносимость OpenCL-приложений может сыграть решающую роль при выборе средства для разработки. Мы также уделим внимание системам с несколькими GPU, которые все чаще используются в рамках подобных кластеров. Вычисления проводились на гибридном кластере ресурсного центра «Вычислительный центр СПбГУ».

    Bogdanov A.V., Gankevich I.G., Gayduchok V.Yu., Yuzhanin N.V.
    Running applications on a hybrid cluster
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 475-483

    A hybrid cluster implies the use of computational devices with radically different architectures. Usually, these are conventional CPU architecture (e.g. x86_64) and GPU architecture (e. g. NVIDIA CUDA). Creating and exploiting such a cluster requires some experience: in order to harness all computational power of the described system and get substantial speedup for computational tasks many factors should be taken into account. These factors consist of hardware characteristics (e.g. network infrastructure, a type of data storage, GPU architecture) as well as software stack (e.g. MPI implementation, GPGPU libraries). So, in order to run scientific applications GPU capabilities, software features, task size and other factors should be considered.

    This report discusses opportunities and problems of hybrid computations. Some statistics from tests programs and applications runs will be demonstrated. The main focus of interest is open source applications (e. g. OpenFOAM) that support GPGPU (with some parts rewritten to use GPGPU directly or by replacing libraries).

    There are several approaches to organize heterogeneous computations for different GPU architectures out of which CUDA library and OpenCL framework are compared. CUDA library is becoming quite typical for hybrid systems with NVIDIA cards, but OpenCL offers portability opportunities which can be a determinant factor when choosing framework for development. We also put emphasis on multi-GPU systems that are often used to build hybrid clusters. Calculations were performed on a hybrid cluster of SPbU computing center.

    Просмотров за год: 4.
  3. Шепелев В.Д., Костюченков Н.В., Шепелев С.Д., Алиева А.А., Макарова И.В., Буйвол П.А., Парсин Г.А.
    Разработка интеллектуальной системы определения объемно-весовых характеристик груза
    Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 437-450

    Промышленная обработка изображений или «машинное зрение» в настоящее время является ключевой технологией во многих отраслях, поскольку эта технология может использоваться для оптимизации различных процессов. Целью настоящей работы является создание программно-аппаратного комплекса измерения габаритно-весовых характеристик груза на базе интеллектуальной системы, основанной на нейросетевых способах идентификации, позволяющих преодолеть технологические ограничения аналогичных комплексов, реализованных на ультразвуковых и инфракрасных измерительных датчиках. Разрабатываемый комплекс будет производить измерения грузов без ограничения на объемные и весовые характеристики груза, который необходимо тарифицировать и сортировать в рамках работы складских комплексов. В состав системы будет входить интеллектуальная компьютерная программа, определяющая объемно-весовые характеристики груза с использованием технологии машинного зрения и экспериментальный образец стенда измерения объёма и веса груза.

    Проведен анализ исследований, посвященных решению аналогичных задач. Отмечено, что недостатком изученных способов являются очень высокие требования к расположению камеры, а также необходимость ручной работы при вычислении размеров, автоматизировать которую не представляется возможным без существенных доработок. В процессе работы исследованы различные способы распознавания объектов на изображениях с целью проведения предметной фильтрации по наличию груза и измерения его габаритных размеров. Получены удовлетворительные результаты при применении камер, сочетающих в себе как оптический способ захвата изображений, так и инфракрасные датчики. В результате работы разработана компьютерная программа, позволяющая захватывать непрерывный поток с видеокамер Intel RealSense с последующим извлечением из обозначенной области трехмерный объект и вычислять габаритные размеры объекта. На данном этапе выполнено: проведен анализ методик компьютерного зрения; разработан алгоритм для реализации задачи автоматического измерения грузов с использованием специальных камер; разработано программное обеспечение, позволяющее получать габаритные размеры объектов в автоматическом режиме.

    Данная разработка по завершении работы может применяться как готовое решение для транспортных компаний, логистических центров, складов крупных производственных и торговых предприятий.

    Shepelev V.D., Kostyuchenkov N.V., Shepelev S.D., Alieva A.A., Makarova I.V., Buyvol P.A., Parsin G.A.
    The development of an intelligent system for recognizing the volume and weight characteristics of cargo
    Computer Research and Modeling, 2021, v. 13, no. 2, pp. 437-450

    Industrial imaging or “machine vision” is currently a key technology in many industries as it can be used to optimize various processes. The purpose of this work is to create a software and hardware complex for measuring the overall and weight characteristics of cargo based on an intelligent system using neural network identification methods that allow one to overcome the technological limitations of similar complexes implemented on ultrasonic and infrared measuring sensors. The complex to be developed will measure cargo without restrictions on the volume and weight characteristics of cargo to be tariffed and sorted within the framework of the warehouse complexes. The system will include an intelligent computer program that determines the volume and weight characteristics of cargo using the machine vision technology and an experimental sample of the stand for measuring the volume and weight of cargo.

    We analyzed the solutions to similar problems. We noted that the disadvantages of the studied methods are very high requirements for the location of the camera, as well as the need for manual operations when calculating the dimensions, which cannot be automated without significant modifications. In the course of the work, we investigated various methods of object recognition in images to carry out subject filtering by the presence of cargo and measure its overall dimensions. We obtained satisfactory results when using cameras that combine both an optical method of image capture and infrared sensors. As a result of the work, we developed a computer program allowing one to capture a continuous stream from Intel RealSense video cameras with subsequent extraction of a three-dimensional object from the designated area and to calculate the overall dimensions of the object. At this stage, we analyzed computer vision techniques; developed an algorithm to implement the task of automatic measurement of goods using special cameras and the software allowing one to obtain the overall dimensions of objects in automatic mode.

    Upon completion of the work, this development can be used as a ready-made solution for transport companies, logistics centers, warehouses of large industrial and commercial enterprises.

  4. Ansori Moch.F., Sumarti N.N., Sidarto K.A., Gunadi I.I.
    An Algorithm for Simulating the Banking Network System and Its Application for Analyzing Macroprudential Policy
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1275-1289

    Modeling banking systems using a network approach has received growing attention in recent years. One of the notable models is that developed by Iori et al, who proposed a banking system model for analyzing systemic risks in interbank networks. The model is built based on the simple dynamics of several bank balance sheet variables such as deposit, equity, loan, liquid asset, and interbank lending (or borrowing) in the form of difference equations. Each bank faces random shocks in deposits and loans. The balance sheet is updated at the beginning or end of each period. In the model, banks are grouped into either potential lenders or borrowers. The potential borrowers are those that have lack of liquidity and the potential lenders are those which have excess liquids after dividend payment and channeling new investment. The borrowers and the lenders are connected through the interbank market. Those borrowers have some percentage of linkage to random potential lenders for borrowing funds to maintain their safety net of the liquidity. If the demand for borrowing funds can meet the supply of excess liquids, then the borrower bank survives. If not, they are deemed to be in default and will be removed from the banking system. However, in their paper, most part of the interbank borrowing-lending mechanism is described qualitatively rather than by detailed mathematical or computational analysis. Therefore, in this paper, we enhance the mathematical parts of borrowing-lending in the interbank market and present an algorithm for simulating the model. We also perform some simulations to analyze the effects of the model’s parameters on banking stability using the number of surviving banks as the measure. We apply this technique to analyze the effects of a macroprudential policy called loan-to-deposit ratio based reserve requirement for banking stability.

    Ansori Moch.F., Sumarti N.N., Sidarto K.A., Gunadi I.I.
    An Algorithm for Simulating the Banking Network System and Its Application for Analyzing Macroprudential Policy
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1275-1289

    Modeling banking systems using a network approach has received growing attention in recent years. One of the notable models is that developed by Iori et al, who proposed a banking system model for analyzing systemic risks in interbank networks. The model is built based on the simple dynamics of several bank balance sheet variables such as deposit, equity, loan, liquid asset, and interbank lending (or borrowing) in the form of difference equations. Each bank faces random shocks in deposits and loans. The balance sheet is updated at the beginning or end of each period. In the model, banks are grouped into either potential lenders or borrowers. The potential borrowers are those that have lack of liquidity and the potential lenders are those which have excess liquids after dividend payment and channeling new investment. The borrowers and the lenders are connected through the interbank market. Those borrowers have some percentage of linkage to random potential lenders for borrowing funds to maintain their safety net of the liquidity. If the demand for borrowing funds can meet the supply of excess liquids, then the borrower bank survives. If not, they are deemed to be in default and will be removed from the banking system. However, in their paper, most part of the interbank borrowing-lending mechanism is described qualitatively rather than by detailed mathematical or computational analysis. Therefore, in this paper, we enhance the mathematical parts of borrowing-lending in the interbank market and present an algorithm for simulating the model. We also perform some simulations to analyze the effects of the model’s parameters on banking stability using the number of surviving banks as the measure. We apply this technique to analyze the effects of a macroprudential policy called loan-to-deposit ratio based reserve requirement for banking stability.

  5. Бернадотт А.К., Мазурин А.Д.
    Оптимизация словаря команд на основе статистического критерия близости в задаче распознавания невербальной речи
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 675-690

    В исследовании мы сосредоточились на задаче классификации невербальной речи для разработки интерфейса «мозг–компьютер» (ИМК) на основе электроэнцефалографии (ЭЭГ), который будет способен помочь людям с ограниченными возможностями и расширить возможности человека в повседневной жизни. Ранее наши исследования показали, что беззвучная речь для некоторых слов приводит к почти идентичным распределениям ЭЭГ-данных. Это явление негативно влияет на точность классификации нейросетевой модели. В этой статье предлагается метод обработки данных, который различает статисти- чески удаленные и неразделимые классы данных. Применение предложенного подхода позволяет достичь цели максимального увеличения смысловой нагрузки словаря, используемого в ИМК.

    Кроме того, мы предлагаем статистический прогностический критерий точности бинарной классификации слов в словаре. Такой критерий направлен на оценку нижней и верхней границ поведения классификаторов только путем измерения количественных статистических свойств данных (в частности, с использованием метода Колмогорова – Смирнова). Показано, что более высокие уровни точности классификации могут быть достигнуты за счет применения предложенного прогностического критерия, позволяющего сформировать оптимизированный словарь с точки зрения семантической нагрузки для ИМК на основе ЭЭГ. Кроме того, использование такого обучающего набора данных для задач классификации по словарю обеспечивает статистическую удаленность классов за счет учета семантических и фонетических свойств соответствующих слов и улучшает поведение классификации моделей распознавания беззвучной речи.

    Bernadotte A., Mazurin A.D.
    Optimization of the brain command dictionary based on the statistical proximity criterion in silent speech recognition task
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 675-690

    In our research, we focus on the problem of classification for silent speech recognition to develop a brain– computer interface (BCI) based on electroencephalographic (EEG) data, which will be capable of assisting people with mental and physical disabilities and expanding human capabilities in everyday life. Our previous research has shown that the silent pronouncing of some words results in almost identical distributions of electroencephalographic signal data. Such a phenomenon has a suppressive impact on the quality of neural network model behavior. This paper proposes a data processing technique that distinguishes between statistically remote and inseparable classes in the dataset. Applying the proposed approach helps us reach the goal of maximizing the semantic load of the dictionary used in BCI.

    Furthermore, we propose the existence of a statistical predictive criterion for the accuracy of binary classification of the words in a dictionary. Such a criterion aims to estimate the lower and the upper bounds of classifiers’ behavior only by measuring quantitative statistical properties of the data (in particular, using the Kolmogorov – Smirnov method). We show that higher levels of classification accuracy can be achieved by means of applying the proposed predictive criterion, making it possible to form an optimized dictionary in terms of semantic load for the EEG-based BCIs. Furthermore, using such a dictionary as a training dataset for classification problems grants the statistical remoteness of the classes by taking into account the semantic and phonetic properties of the corresponding words and improves the classification behavior of silent speech recognition models.

  6. Софронова Е.А., Дивеев А.И., Казарян Д.Э., Константинов С.В., Дарьина А.Н., Селиверстов Я.А., Баскин Л.А.
    Использование реальных данных из нескольких источников для оптимизации транспортных потоков в пакете CTraf
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 147-159

    Рассмотрена задача оптимального управления транспортным потоком в сети городских дорог. Управление осуществляется изменением длительностей рабочих фаз светофоров на регулируемых перекрестках. Приведено описание разработанной системы управления. В системе управления предусмотрено использование трех видов управлений: программного, с обратной связью и ручного. При управлении с обратной связью для определения количественных характеристик транспортного потока используются детекторы дорожной инфраструктуры, видеокамеры, индуктивные петлевые и радиолокационные датчики. Обработка сигналов с детекторов позволяет определить состояние транспортного потока в каждый текущий момент времени. Для определения моментов переключения рабочих фаз светофоров количественные характеристики транспортных потоков поступают в математическую модель транспортного потока, реализованную в вычислительной среде системы автоматического управления транспортными потоками. Модель представляет собой систему конечно-разностных рекуррентных уравнений и описывает изменение транспортного потока на каждом участке дороги в каждый такт времени на основе рассчитанных данных по характеристикам транспортного потока в сети, пропускным способностям маневров и распределению потока на перекрестках с альтернативными направлениями движения. Модель обладает свойствами масштабирования и агрегирования. Структура модели зависит от структуры графа управляемой сети дорог, а количество узлов в графе равно количеству рассматриваемых участков дорог сети. Моделирование изменений транспортного потока в режиме реального времени позволяет оптимально определять длительности рабочих фаз светофоров и обеспечивать управление транспортным потоком с обратной связью по его текущему состоянию. В работе рассмотрена система автоматического сбора и обработки данных, поступающих в модель. Для моделирования состояний транспортного потока в сети и решения задачи оптимального управления транспортным потоком разработан программный комплекс CTraf, краткое описание которого представлено в работе. Приведен пример решения задачи оптимального управления транспортным потокам в сети дорог города Москва на основе реальных данных.

    Sofronova E.A., Diveev A.I., Kazaryan D.E., Konstantinov S.V., Daryina A.N., Seliverstov Y.A., Baskin L.A.
    Utilizing multi-source real data for traffic flow optimization in CTraf
    Computer Research and Modeling, 2024, v. 16, no. 1, pp. 147-159

    The problem of optimal control of traffic flow in an urban road network is considered. The control is carried out by varying the duration of the working phases of traffic lights at controlled intersections. A description of the control system developed is given. The control system enables the use of three types of control: open-loop, feedback and manual. In feedback control, road infrastructure detectors, video cameras, inductive loop and radar detectors are used to determine the quantitative characteristics of current traffic flow state. The quantitative characteristics of the traffic flows are fed into a mathematical model of the traffic flow, implemented in the computer environment of an automatic traffic flow control system, in order to determine the moments for switching the working phases of the traffic lights. The model is a system of finite-difference recurrent equations and describes the change in traffic flow on each road section at each time step, based on retrived data on traffic flow characteristics in the network, capacity of maneuvers and flow distribution through alternative maneuvers at intersections. The model has scaling and aggregation properties. The structure of the model depends on the structure of the graph of the controlled road network. The number of nodes in the graph is equal to the number of road sections in the considered network. The simulation of traffic flow changes in real time makes it possible to optimally determine the duration of traffic light operating phases and to provide traffic flow control with feedback based on its current state. The system of automatic collection and processing of input data for the model is presented. In order to model the states of traffic flow in the network and to solve the problem of optimal traffic flow control, the CTraf software package has been developed, a brief description of which is given in the paper. An example of the solution of the optimal control problem of traffic flows on the basis of real data in the road network of Moscow is given.

  7. Юмаганов А.С., Агафонов А.А., Мясников В.В.
    Адаптивное управление сигналами светофоров на основе обучения с подкреплением, инвариантное к конфигурации светофорного объекта
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1253-1269

    В работе представлен метод адаптивного управления сигналами светофоров, инвариантный к конфигурации светофорного объекта. Предложенный метод использует одну модель нейронной сети для управления светофорами различных конфигураций, отличающихся как по числу контролируемых полос движения, так и по используемому набору фаз. Для описания пространства состояний используется как динамическая информация о состоянии транспортного потока, так и статические данные о конфигурации контролируемого перекрестка. Для повышения скорости обучения модели предлагается использовать эксперта, предоставляющего дополнительные данные для обучения модели. В качестве эксперта используется метод адаптивного управления, основанный на максимизации взвешенного потока транспортных средств через перекресток. Экспериментальные исследования разработанного метода, проведенные в системе микроскопического моделирования движения транспортных средств, подтвердили его работоспособность и эффективность. Была показана возможность применения разработанного метода в сценарии моделирования, не используемом в процессе обучения. Представлено сравнение предложенного метода с другими известными решениями задачи управления светофорным объектом, в том числе с методом, используемым в качестве эксперта. В большинстве сценариев разработанный метод показал лучший результат по критериям среднего времени движения и среднего времени ожидания. Преимущество над методом, используемым в качестве эксперта, в зависимости от исследуемого сценария составило от 2% до 12% по критерию среднего времени ожидания транспортных средств и от 1% до 7% по критерию среднего времени движения.

    Yumaganov A.S., Agafonov A.A., Myasnikov V.V.
    Reinforcement learning-based adaptive traffic signal control invariant to traffic signal configuration
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1253-1269

    In this paper, we propose an adaptive traffic signal control method invariant to the configuration of the traffic signal. The proposed method uses one neural network model to control traffic signals of various configurations, differing both in the number of controlled lanes and in the used traffic light control cycle (set of phases). To describe the state space, both dynamic information about the current state of the traffic flow and static data about the configuration of a controlled intersection are used. To increase the speed of model training and reduce the required amount of data required for model convergence, it is proposed to use an “expert” who provides additional data for model training. As an expert, we propose to use an adaptive control method based on maximizing the weighted flow of vehicles through an intersection. Experimental studies of the effectiveness of the developed method were carried out in a microscopic simulation software package. The obtained results confirmed the effectiveness of the proposed method in different simulation scenarios. The possibility of using the developed method in a simulation scenario that is not used in the training process was shown. We provide a comparison of the proposed method with other baseline solutions, including the method used as an “expert”. In most scenarios, the developed method showed the best results by average travel time and average waiting time criteria. The advantage over the method used as an expert, depending on the scenario under study, ranged from 2% to 12% according to the criterion of average vehicle waiting time and from 1% to 7% according to the criterion of average travel time.

  8. Васильев А.Н., Карп В.П.
    Моделирование саморегуляции активного нейрона в сети
    Компьютерные исследования и моделирование, 2012, т. 4, № 3, с. 613-619

    Предложена модель поведения активного нейрона, явившаяся развитием модели, описанной в работе Шамиса А.Л. [Шамис, 2006]. Предложены топология локально связанной матрицы активной нейронной сети и структура интеграции информации от различных источников. Приведен пример сценария поведения робота, управляемого активной нейронной сетью. Представлены результаты экспериментов с программной реализацией нейросети.

    Vasiliev A.N., Karp V.P.
    Modeling self-regulation of active neuron in the network
    Computer Research and Modeling, 2012, v. 4, no. 3, pp. 613-619

    A model of the behavior of the active neuron, which was the development of the model described in Shamis A.L. [Shamis, 2006], is designed. Proposed topology is locally connected matrix of the active neural network and the structure integration of information from different sources. An example of the script behavior robot controlled by this neural network is described. The results of experiments with the software implementation of a neural network are presented.

    Просмотров за год: 1.
  9. Тарасевич Ю.Ю., Зелепухина В.А.
    Академическая сеть как возбудимая среда
    Компьютерные исследования и моделирование, 2015, т. 7, № 1, с. 177-183

    В работе проведено моделирование распространения некой идеи в профессиональной виртуальной группе. Мы рассматриваем распространение возбуждения в неоднородной возбудимой среде высокой связности. Предполагается, что элементы сети образуют полный граф. Параметры элементов распределены по нормальному закону. Моделирование показало, что в зависимости от параметров в виртуальной группе интерес к идее может затухать или испытывать колебания. Наличие в сети постоянно возбужденного элемента достаточно высокой активности приводит к хаотизации — доля членов сообщества, активно интересующихся идеей, меняется нерегулярно.

    Tarasevich Y.Y., Zelepukhina V.A.
    Academic network as excitable medium
    Computer Research and Modeling, 2015, v. 7, no. 1, pp. 177-183

    The paper simulated the spread of certain ideas in a professional virtual group. We consider the propagation of excitation in an inhomogeneous excitable medium of high connectivity. It is assumed that the network elements form a complete graph. Parameters of the elements are normally distributed. The simulation showed that interest in the idea can fade or fluctuate depending on the settings in the virtual group. The presence of a permanent excited element with relatively high activity leads to chaos — the fraction of members of the community actively interested in an idea varies irregularly.

    Просмотров за год: 6.
  10. Богданов А.В., Пуае Сон K., Зайя К.
    Производительность OpenMP и реализация MPI на системе ultrasparc
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 485-491

    Данная работа нацелена на программистов и разработчики, заинтересованных в использовании технологии параллельного программирования для увеличения производительности приложений. Программное обеспечение Oracle Solaris Studio обеспечивает современную оптимизацию и распараллеливание компиляторов для языков C, C ++ и ФОРТРАН, продвинутый отладчик, и оптимизированные математи- ческие и быстродействующие библиотеки. Также включены чрезвычайно мощный инструмент анализа производительности для профилирования последовательных и параллельных приложений, инструмент анализа для обнаружения состязания при передаче данных и блокировки в памяти параллельных программ и IDE. Программное обеспечение Oracle Message Passing Toolkit обеспечивает высокопроизводительные MPI библиотеки и сопряжённую среду во время работы программы, необходимую для приложений передачи сообщений, которые могут работать на одной системе или по всему множеству вычислительных систем с высокопроизводительным сетевым оснащением, включая Gigabit Ethernet, 10 Gigabit Ethernet, InfiniBand и Myrinet. Примеры OpenMP и MPI представлены по всему тексту работы, включая их использование через программные продукты Oracle Solaris Studio и Oracle Message Passing Toolkit для развития и развертывания последовательных и параллельных приложений на основе систем SPARC и x86/x64. В работе продемонстрировано, как развивать и развертывать приложение, распараллеленное с OpenMP и/или MPI.

    Bogdanov A.V., P. Sone K. Ko, Zaya K.
    Performance of the OpenMP and MPI implementations on ultrasparc system
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 485-491

    This paper targets programmers and developers interested in utilizing parallel programming techniques to enhance application performance. The Oracle Solaris Studio software provides state-of-the-art optimizing and parallelizing compilers for C, C++ and Fortran, an advanced debugger, and optimized mathematical and performance libraries. Also included are an extremely powerful performance analysis tool for profiling serial and parallel applications, a thread analysis tool to detect data races and deadlock in memory parallel programs, and an Integrated Development Environment (IDE). The Oracle Message Passing Toolkit software provides the high-performance MPI libraries and associated run-time environment needed for message passing applications that can run on a single system or across multiple compute systems connected with high performance networking, including Gigabit Ethernet, 10 Gigabit Ethernet, InfiniBand and Myrinet. Examples of OpenMP and MPI are provided throughout the paper, including their usage via the Oracle Solaris Studio and Oracle Message Passing Toolkit products for development and deployment of both serial and parallel applications on SPARC and x86/x64 based systems. Throughout this paper it is demonstrated how to develop and deploy an application parallelized with OpenMP and/or MPI.

    Просмотров за год: 2.
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.