Текущий выпуск Номер 6, 2020 Том 12
Результаты поиска по 'CUDA':
Найдено статей: 5
  1. Казённов А.М.
    Основы технологии CUDA
    Компьютерные исследования и моделирование, 2010, т. 2, № 3, с. 295-308

    Рассказывается об истории развития технологии CUDA, о принципиальных её ограничениях. Статья предназначена для читателей, не знакомых с особенностями программирования графических процессоров, но желающих оценитьв озможности их использования для решения прикладных задач.

    Kazennov A.M.
    Basic concepts of CUDA technology
    Computer Research and Modeling, 2010, v. 2, no. 3, pp. 295-308

    The history of the development of CUDA technology and its fundamental limitations are discribed. The article is intended for those readers who are not familiar with graphics adapter programming features but want to evaluate the possibilities for GPU computing applications.

    Просмотров за год: 5. Цитирований: 4 (РИНЦ).
  2. Геллер О.В., Васильев М.О., Холодов Я.А.
    Построение высокопроизводительного вычислительного комплекса для моделирования задач газовой динамики
    Компьютерные исследования и моделирование, 2010, т. 2, № 3, с. 309-317

    Целью исследований является разработка программного комплекса для решения задач газовой динамики в многосвязных областях правильной геометрии на высокопроизводительной вычислительной системе. Сравниваются различные технологии реализации параллельных вычислений. Программный комплекс реализован на многопоточных параллельных системах, использующих для организации расчета как многоядерную архитектуру, так и массивно-параллельную. Проведено сравнение численных результатов на основе программного комплекса с известными решениями модельных задач. Проведено исследование производительности различных вычислительных платформ.

    Geller O.V., Vasilev M.O., Kholodov Y.A.
    Building a high-performance computing system for simulation of gas dynamics
    Computer Research and Modeling, 2010, v. 2, no. 3, pp. 309-317

    The aim of research is to develop software system for solving gas dynamic problem in multiply connected integration domains of regular shape by high-performance computing system. Comparison of the various technologies of parallel computing has been done. The program complex is implemented using multithreaded parallel systems to organize both multi-core and massively parallel calculation. The comparison of numerical results with known model problems solutions has been done. Research of performance of different computing platforms has been done.

    Просмотров за год: 5. Цитирований: 6 (РИНЦ).
  3. Копысов С.П., Кузьмин И.М., Недожогин Н.С., Новиков А.К., Рычков В.Н., Сагдеева Ю.А., Тонков Л.Е.
    Параллельная реализация конечно-элементных алгоритмов на графических ускорителях в программном комплексе FEStudio
    Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 79-97

    Рассматриваются новые подходы и алгоритмы распараллеливания вычислений метода конечных элементов, реализованные в программном комплексе FEStudio. Представлена программная модель комплекса, позволяющая расширять возможности распараллеливания на различных уровнях вычислений. Разработаны параллельные алгоритмы численного интегрирования динамических задач и локальных матриц жесткости, формирования и решения систем уравнений с использованием модели параллелизма данных CUDA.

    Kopysov S.P., Kuzmin I.M., Nedozhogin N.S., Novikov A.K., Rychkov V.N., Sagdeeva Y.A., Tonkov L.E.
    Parallel implementation of a finite-element algorithms on a graphics accelerator in the software package FEStudio
    Computer Research and Modeling, 2014, v. 6, no. 1, pp. 79-97

    In this paper, we present new parallel algorithms for finite element analysis implemented in the FEStudio software framework. We describe the programming model of finite element method, which supports parallelism on different stages of numerical simulations. Using this model, we develop parallel algorithms of numerical integration for dynamic problems and local stiffness matrices. For constructing and solving the systems of equations, we use the CUDA programming platform.

    Просмотров за год: 4. Цитирований: 24 (РИНЦ).
  4. Алексеенко А.Е., Казённов А.М.
    Реализация клеточных автоматов «игра “Жизнь”» с применением технологий CUDA и OpenCL
    Компьютерные исследования и моделирование, 2010, т. 2, № 3, с. 323-326

    В данной статье проанализирован опыт преподавания курса «Программирование на CUDA и OpenCL» для участников ежегодной межвузовской молодежной школы по высокопроизводительным вычислениям МФТИ-2010. В статье разобраны как содержимое лекций и семинарские задачи, так и особенности преподнесения материала. Обсуждаются результаты, полученные учащимися при выполнении практических задач. Приводится сравнение быстродействия различных алгоритмов реализации клеточных автоматов «игра “Жизнь”» с применением технологий CUDA и OpenCL.

    Alekseenko A.E., Kazennov A.M.
    CUDA and OpenCL implementations of Conway’s Game of Life cellular automata
    Computer Research and Modeling, 2010, v. 2, no. 3, pp. 323-326

    In this article the experience of reading “CUDA and OpenCL programming” course during high perfomance computing summer school MIPT-2010 is analyzed. Content of lectures and practical tasks, as well as manner of presenting of the material are regarded. Performance issues of different algorithms implemented by students at practical training session are dicussed.

    Просмотров за год: 9. Цитирований: 3 (РИНЦ).
  5. Богданов А.В., Ганкевич И.Г., Гайдучок В.Ю., Южанин Н.В.
    Запуск приложений на гибридном кластере
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 475-483

    Гибридный кластер подразумевает использование вычислительных ресурсов с различными архитектурами. Как правило, в таких системах используется CPU распространенной архитектуры (например, x86_64) и GPU (например, NVIDIA CUDA). Создание и эксплуатация подобного кластера требует определенного опыта: для того чтобы задействовать все вычислительные мощности такой системы и получить существенное ускорение на задачах, требуется учесть множество факторов. К таким факторам относятся как характеристики оборудования (например, особенности сетевой инфраструктуры, хранилища, архитектуры GPU), так и характеристики программного обеспечения (например, реализация MPI, библиотеки для работы с GPU). Таким образом для эффективных научных расчетов на подобных системах требуется помнить о характеристиках ускорителя (GPU), особенностях программного обеспечения, характеристиках задачи и о многих других факторах.

    В этой статье анализируются достоинства и недостатки гибридных вычислений. Будут приведены результаты запуска некоторых тестов и научных приложений, использующих GPGPU. Основное внимание уделено программных продуктах с открытым исходным кодом, которые поддерживают работу с GPGPU.

    Существует несколько подходов для организации гетерогенных вычислений. В данной статье мы рассмотрим приложения, использующие CUDA и OpenCL. CUDA довольно часто используется в подобных гибридных системах, в то время как переносимость OpenCL-приложений может сыграть решающую роль при выборе средства для разработки. Мы также уделим внимание системам с несколькими GPU, которые все чаще используются в рамках подобных кластеров. Вычисления проводились на гибридном кластере ресурсного центра «Вычислительный центр СПбГУ».

    Bogdanov A.V., Gankevich I.G., Gayduchok V.Yu., Yuzhanin N.V.
    Running applications on a hybrid cluster
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 475-483

    A hybrid cluster implies the use of computational devices with radically different architectures. Usually, these are conventional CPU architecture (e.g. x86_64) and GPU architecture (e. g. NVIDIA CUDA). Creating and exploiting such a cluster requires some experience: in order to harness all computational power of the described system and get substantial speedup for computational tasks many factors should be taken into account. These factors consist of hardware characteristics (e.g. network infrastructure, a type of data storage, GPU architecture) as well as software stack (e.g. MPI implementation, GPGPU libraries). So, in order to run scientific applications GPU capabilities, software features, task size and other factors should be considered.

    This report discusses opportunities and problems of hybrid computations. Some statistics from tests programs and applications runs will be demonstrated. The main focus of interest is open source applications (e. g. OpenFOAM) that support GPGPU (with some parts rewritten to use GPGPU directly or by replacing libraries).

    There are several approaches to organize heterogeneous computations for different GPU architectures out of which CUDA library and OpenCL framework are compared. CUDA library is becoming quite typical for hybrid systems with NVIDIA cards, but OpenCL offers portability opportunities which can be a determinant factor when choosing framework for development. We also put emphasis on multi-GPU systems that are often used to build hybrid clusters. Calculations were performed on a hybrid cluster of SPbU computing center.

    Просмотров за год: 4.

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал входит в Перечень российских рецензируемых научных журналов, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученых степеней доктора и кандидата наук ВАК, группы специальностей: 01.01.00, 01.02.00.
 

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал индексируется в Scopus