Текущий выпуск Номер 5, 2020 Том 12
Результаты поиска по 'компьютерное зрение':
Найдено статей: 10
  1. От редакции
    Компьютерные исследования и моделирование, 2018, т. 10, № 1, с. 3-5
    Просмотров за год: 10.
  2. От редакции
    Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 5-7
    Просмотров за год: 27.
  3. От редакции
    Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 363-365
    Просмотров за год: 20.
  4. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 5-8
  5. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 259-261
  6. Вражнов Д.А., Шаповалов А.В., Николаев В.В.
    Симметрии дифференциальных уравнений в задачах компьютерного зрения
    Компьютерные исследования и моделирование, 2010, т. 2, № 4, с. 369-376

    В данной работе приводится обобщение подхода к построению инвариантных векторов признаков изображений в задачах распознавания образов. Базовым элементом предлагаемого алгоритма является замена обычно применяемого гауссова фильтра исходного изображения сверткой функции изображения с функцией Грина эволюционного оператора, наследующей свойства симметрий этого оператора. Применение обобщенной фильтрации позволяет выделять дополнительные характеристики инвариантных векторов признаков.

    Просмотров за год: 8. Цитирований: 4 (РИНЦ).
  7. Вражнов Д.А., Шаповалов А.В., Николаев В.В.
    О качестве работы алгоритмов слежения за объектами на видео
    Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 303-313

    Движение объекта на видео классифицируется на регулярное (движение объекта по непрерывной траектории) и нерегулярное (разрывы траекторий вследствие заслонения объекта слежения другими объектами, скачка объекта и др.). В случае регулярного движения объекта трекер рассматривается как динамическая система, что позволяет использовать условия существования, единственности и устойчивости решения такой системы как критерий корректной работы трекера. Предложен количественный критерий оценки корректной работы алгоритма слежения mean-shift, основанный на применении условия Липшица и других параметров трекера. Полученный результат обобщается на случай произвольного алгоритма слежения.

    Просмотров за год: 20. Цитирований: 9 (РИНЦ).
  8. Семакин А.Н.
    Оценка масштабируемости программы расчета движения примесей в атмосфере средствами симулятора gem5
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 773-794

    В данной работе мы предлагаем новую эффективную программную реализацию алгоритма расчета трансконтинентального переноса примеси в атмосфере от естественного или антропогенного источника на адаптивной конечно-разностной сетке, концентрирующей свои узлы внутри переносимого облака примеси, где наблюдаются резкие изменения значений ее массовой доли, и максимально разрежающей узлы во всех остальных частях атмосферы, что позволяет минимизировать общее количество узлов. Особенностью реализации является представление адаптивной сетки в виде комбинации динамических (дерево, связный список) и статических (массив) структур данных. Такое представление сетки позволяет увеличить скорость выполнения расчетов в два раза по сравнению со стандартным подходом представления адаптивной сетки только через динамические структуры данных.

    Программа создавалась на компьютере с шестиядерным процессором. С помощью симулятора gem5, позволяющего моделировать работу различных компьютерных систем, была произведена оценка масштабируемости программы при переходе на большее число ядер (вплоть до 32) на нескольких моделях компьютерной системы вида «вычислительные ядра – кэш-память – оперативная память» с разной степенью детализации ее элементов. Отмечено существенное влияние состава компьютерной системы на степень масштабируемости исполняемой на ней программы: максимальное ускорение на 32-х ядрах при переходе от двухуровневого кэша к трехуровневому увеличивается с 14.2 до 22.2. Время выполнения программы на модели компьютера в gem5 превосходит время ее выполнения на реальном компьютере в 104–105 раз в зависимости от состава модели и составляет 1.5 часа для наиболее детализированной и сложной модели.

    Также в статье рассматриваются подробный порядок настройки симулятора gem5 и наиболее оптимальный с точки зрения временных затрат способ проведения симуляций, когда выполнение не представляющих интерес участков кода переносится на физический процессор компьютера, где работает gem5, а непосредственно внутри симулятора выполняется лишь исследуемый целевой кусок кода.

  9. Куржанский А.А., Куржанский А.Б.
    Перекресток в умном городе
    Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 347-358

    Надежность автоматизированных систем управления (АСУ) и безопасность автономных автомобилей основываются на предположении, что если система компьютерного зрения, установленная на автомобиле, способна идентифицировать объекты в поле видимости и АСУ способна достоверно оценить намерение и предсказать поведение каждого из этих объектов, то автомобиль может спокойно управляться без водителя. Однако как быть с объектами, которые не видны?

    В данной статье мы рассматриваем задачу из двух частей: (1) статической (о потенциальных слепых зонах) и (2) динамической реального времени (об идентификации объектов в слепых зонах и информировании участников дорожного движения о таких объектах). Эта задача рассматривается в контексте городских перекрестков.

    Просмотров за год: 29.
  10. Шлеймович М.П., Дагаева М.В., Катасёв А.С., Ляшева С.А., Медведев М.В.
    Анализ изображений в системах управления беспилотными автомобилями на основе модели энергетических признаков
    Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 369-376

    В статье показана актуальность научно-исследовательских работ в области создания систем управления беспилотными автомобилями на основе технологий компьютерного зрения. Средства компьютерного зрения используются для решения большого количества различных задач, в том числе для определения местоположения автомобиля, обнаружения препятствий, определения пригодного для парковки места. Данные задачи являются ресурсоемкими и должны выполняться в реальном режиме времени. Поэтому актуальна разработка эффективных моделей, методов и средств, обеспечивающих достижение требуемых показателей времени и точности для применения в системах управления беспилотными автомобилями. При этом важное значение имеет выбор модели представления изображений. В данной работе рассмотрена модель на основе вейвлет-преобразования, позволяющая сформировать признаки, характеризующие оценки энергии точек изображения и отражающие их значимость с точки зрения вклада в общую энергию изображения. Для формирования модели энергетических признаков выполняется процедура, основанная на учете зависимостей между вейвлет-коэффициентами различных уровней и применении эвристических настроечных коэффициентов для усиления или ослабления влияния граничных и внутренних точек. На основе предложенной модели можно построить описания изображений для выделения и анализа их характерных особенностей, в том числе для выделения контуров, регионов и особых точек. Эффективность предлагаемого подхода к анализу изображений обусловлена тем, что рассматриваемые объекты, такие как дорожные знаки, дорожная разметка или номера автомобилей, которые необходимо обнаруживать и идентифицировать, характеризуются соответствующими признаками. Кроме того, использование вейвлет-преобразований позволяет производить одни и те же базовые операции для решения комплекса задач в бортовых системах беспилотных автомобилей, в том числе для задач первичной обработки, сегментации, описания, распознавания и сжатия изображений. Применение такого унифицированного подхода позволит сократить время на выполнение всех процедур и снизить требования к вычислительным ресурсам бортовой системы беспилотного автотранспортного средства.

    Просмотров за год: 31. Цитирований: 1 (РИНЦ).

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал входит в Перечень российских рецензируемых научных журналов, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученых степеней доктора и кандидата наук ВАК, группы специальностей: 01.01.00, 01.02.00.
 

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал индексируется в Scopus