Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'Y-model':
Найдено статей: 781
  1. Яковенко Г.Н.
    Причины нелинейности: глобальность и некоммутативность
    Компьютерные исследования и моделирование, 2009, т. 1, № 4, с. 355-358

    Динамический процесс моделируется обыкновенными дифференциальными уравнениями. Если у неавтономной системы обыкновенных дифференциальных уравнений в некоторой области существует общее решение, то неавтономной заменой переменных система максимально упрощается: правые части - нули. У автономной системы обыкновенных дифференциальных уравнений в окрестности неособой точки правая часть выпрямляется. Рассмотрен случай сепарабельной системы: в правой части линейная комбинация автономных векторных полей, коэффициенты - функции независимой переменной. Если поля коммутируют, то они общей заменой переменных выпрямляются.

    Yakovenko G.N.
    Reasons for nonlinearity: globality and noncommutativity
    Computer Research and Modeling, 2009, v. 1, no. 4, pp. 355-358

    A dynamic process modeled by ordinary differential equations is considered. If a nonautonomous system of ordinary differential equations has a general solution in a certain area, than the system can be simplified by nonautonomous substitution of variables: right parts turn to zeroes. Right parts of an autonomous system of ordinary differential equations in the neighborhood of nonsingular points can be linearized. A separable system where the right part contains linear combination of autonomous vector fields and factors are functions of independent variable is considered. If the fields commute than they can be linearized by general substitution of variables.

    Просмотров за год: 3.
  2. Грачев В.А., Найштут Ю.С.
    Континуальные трансформирующиеся оболочки из тонких пластин
    Компьютерные исследования и моделирование, 2011, т. 3, № 1, с. 3-29

    Изучаются трансформирующиеся системы, собранные из трапециевидных пластин. При развертывании пакета пластинок образуется сетчатая оболочка с шестигранными ячейками. Доказывается, что при определенных соотношениях размеров граней в шестизвенниках появляются дополнительные внутренние степени свободы. Если же используются тонкие пластинки, то континуальная аппроксимация развернутой сети может интерпретироваться как оболочка с широким набором локальных кривизн. Строится кинематика континуальной модели методом подвижного репера Картана. Изучается механическое поведение континуальных сетей, если цилиндрические шарниры между пластинами выполнены из пластических материалов, обладающих памятью формы. Исследуются переходы оболочек из одной равновесной формы в другую. Показаны возможные практические применения континуальных сетей.

    Grachev V.A., Nayshtut Yu.S.
    Continuum deployable shells made of thin plates
    Computer Research and Modeling, 2011, v. 3, no. 1, pp. 3-29

    This paper covers deployable systems assembled from trapezium plates. When the plate package is unwrapped, a net shell with six loop cells is formed. It is proved that additional degrees of freedom appear in case of certain correlation between the sizes of the six loop faces. When thin plates were used, the continuum approximation of the deployed net could be interpreted as a shell with a wide variety of local curvatures. Kinematics of the continuum model is analyzed by the method of Cartan moving hedron. Mechanical behavior of continuum nets is studied when cylindrical hinges between the plates are completed of shape memory plastic materials. The paper researches into shell transformations from one stable form to the other. Various practical applications of the continuum nets are demonstrated.

    Цитирований: 3 (РИНЦ).
  3. Поддубный В.В., Поликарпов А.А.
    Диссипативная стохастическая динамическая модель развития языковых знаков
    Компьютерные исследования и моделирование, 2011, т. 3, № 2, с. 103-124

    Предлагается диссипативная стохастическая динамическая модель эволюции языковых знаков, удовлетворяющая принципу «наименьшего действия» — одному из фундаментальных вариационных принципов природы. Модель предполагает пуассоновский характер потока рождения языковых знаков, экспоненциальное (показательное) распределение ассоциативно-семантического потенциала (АСП) знака и оперирует разностными стохастическими уравнениями специального вида для диссипативных процессов. Получаемые из модели распределения полисемии и частотно-ранговые распределения языковых знаков статистически значимо (по критерию Колмогорова–Смирнова) не отличаются от эмпирических распределений, полученных из представительных толковых и частотных словарей русского и английского языков.

    Poddubny V.V., Polikarpov A.A.
    Dissipative Stochastic Dynamic Model of Language Signs Evolution
    Computer Research and Modeling, 2011, v. 3, no. 2, pp. 103-124

    We offer the dissipative stochastic dynamic model of the language sign evolution, satisfying to the principle of the least action, one of fundamental variational principles of the Nature. The model conjectures the Poisson nature of the birth flow of language signs and the exponential distribution of their associative-semantic potential (ASP). The model works with stochastic difference equations of the special type for dissipative processes. The equation for momentary polysemy distribution and frequency-rank distribution drawn from our model do not differs significantly (by Kolmogorov-Smirnov’s test) from empirical distributions, got from main Russian and English explanatory dictionaries as well as frequency dictionaries of them.

    Просмотров за год: 1. Цитирований: 6 (РИНЦ).
  4. Стеряков А.А.
    Об одном универсальном методе построения моделей для сложных многоагентных систем
    Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 513-523

    Врабо те предлагается универсальный метод построения агентных имитационных моделей сложных систем, предполагающий их компьютерную реализацию на языках объектноориентированного программирования. Метод определяет способ построения математических моделей агентов и их взаимодействия, а также описывает архитектуру комплекса программ для имитации динамики моделируемой системы. Эффективность предлагаемого метода иллюстрируется примерами его применения для моделирования сложных систем из двух областей: экономической (модель финансового рынка с неоднородными агентами) и биологической (пространственно-временная имитация взаимодействия биологических популяций).

    Steryakov A.A.
    A universal method for constructing the simulation model of complex multi-agent systems
    Computer Research and Modeling, 2013, v. 5, no. 4, pp. 513-523

    This paper presents a universal method for constructing an agent-based model of complex systems for their further clear computer representation by means of object-oriented programming languages. The method specifies both steps of model developing from the mathematical description of the system to the determined architecture of the program simulating the system. The efficiency of the method is illustrated by the construction of the two simulation models for the complex systems of various origins: the interactive simulation of the stock exchange and space-time simulation of biological species competition.

    Просмотров за год: 5. Цитирований: 2 (РИНЦ).
  5. Малинецкий Г.Г., Фаллер Д.С.
    Переход к хаосу в системах «реакция–диффузия». Простейшие модели
    Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 3-12

    В работе рассматривается появление хаотических аттракторов в системе трех обыкновенных дифференциальных уравнений, возникающих в теории систем «реакция–диффузия». Исследуются динамика соответствующих одномерных и двумерных отображений и ляпуновские показатели возникающих аттракторов. Показано, что переход к хаосу происходит по нетрадиционному сценарию, связанному с многократным рождением и исчезновением хаотических режимов, который ранее был изучен для одномерных отображений с острой вершиной и квадратичным минимумом. С помощью численного анализа были исследованы характерные особенности системы: наличие областей бистабильности и гиперболичности, кризис хаотических аттракторов.

    Malinetsky G.G., Faller D.S.
    Transition to chaos in the «reaction–diffusion» systems. The simplest models
    Computer Research and Modeling, 2014, v. 6, no. 1, pp. 3-12

    The article discusses the emergence of chaotic attractors in the system of three ordinary differential equations arising in the theory of «reaction-diffusion» systems. The dynamics of the corresponding one- and two-dimensional maps and Lyapunov exponents of such attractors are studied. It is shown that the transition to chaos is in accordance with a non-traditional scenario of repeated birth and disappearance of chaotic regimes, which had been previously studied for one-dimensional maps with a sharp apex and a quadratic minimum. Some characteristic features of the system — zones of bistability and hyperbolicity, the crisis of chaotic attractors — are studied by means of numerical analysis.

    Просмотров за год: 6. Цитирований: 1 (РИНЦ).
  6. Решена задача восстановления элемента f бесконечномерного гильбертова пространства L2(X) по результатам измерений конечного набора его линейных функционалов, искаженным (случайной) погрешностью без априорных данных об f, получено семейство линейных подпространств максимальной размерности, проекции элемента f на которые допускают оценки с заданной точностью. Эффективный ранг ρ(δ) задачи оценивания определен как функция, равная максимальной размерности ортогональной составляющей Pf элемента f, которая может быть оценена с погрешностью, не превосходящей δ. Приведен пример восстановления спектра излучения по конечному набору экспериментальных данных.

    Chulichkov A.I., Yuan B.
    Effective rank of a problem of function estimation based on measurement with an error of finite number of its linear functionals
    Computer Research and Modeling, 2014, v. 6, no. 2, pp. 189-202

    The problem of restoration of an element f of Euclidean functional space  L2(X) based on the results of measurements of a finite set of its linear functionals, distorted by (random) error is solved. A priori data aren't assumed. Family of linear subspaces of the maximum (effective) dimension for which the projections of element to them allow estimates with a given accuracy, is received. The effective rank ρ(δ) of the estimation problem is defined as the function equal to the maximum dimension of an orthogonal component Pf of the element f which can be estimated with a error, which is not surpassed the value δ. The example of restoration of a spectrum of radiation based on a finite set of experimental data is given.

  7. Рассматривается эффект Эйнштейна, Подольского, Розена в его связи с квантовой механикой и теорией относительности. Показано, что если ввести в квантовую механику понятие индивидуального состояния квантовой частицы в ансамбле, то можно устранить противоречие с теорией относительности, которое получило название дальнодействия между коррелированными частицами. В работе развит аппарат введения индивидуального состояния в формализм квантовой механики. Строится модель эффекта ЭПР, не содержащая противоречия. Анализируется общий механизм формирования законов теории вероятности в квантовой механике, примером которого является нарушение неравенств Белла для скрытых параметров.

    Koganov A.V.
    Agreement of Relation Theory and EPR Effect by individual state of quantum particle
    Computer Research and Modeling, 2015, v. 7, no. 1, pp. 3-34

    We consider effect of Einstein, Podolsky, Rosen in connection with quantum mechanic and relative theory. We sow that may introduce in quantum mechanic the individual state for quantum particle which eliminate the contradiction quantum mechanics with relative theory of type long-range action between correlated particles. In article we develop the apparatus for individual state introducing in quantum mechanic formalism and build the EPR effect model without contradictory. We describe the general mechanism of Bell inequalities infringement and analogical effects.

    Просмотров за год: 1.
  8. Федосова А.Н., Силаев Д.А.
    Математическое моделирование изгиба круговой пластинки с применением $S$-сплайнов
    Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 977-988

    Настоящая работа посвящена применению теории недавно разработанных полулокальных сглаживающих сплайнов, или $S$-сплайнов высоких степеней, к решению задач теории упругости. $S$-сплайн — кусочно-полиномиальная функция, коэффициенты полиномов которой определяются из двух условий: первая часть коэффициентов определяется условиями гладкой склейки, остальные определяются методом наименьших квадратов. Мы рассмотрим, каким образом могут быть применены сплайны 7-ой степени класса $C^4$ при решении бигармонического уравнения на круге.

    Fedosova A.N., Silaev D.A.
    Mathematical modeling of bending of a circular plate using $S$-splines
    Computer Research and Modeling, 2015, v. 7, no. 5, pp. 977-988

    This article is dedicated to the use of higher degree $S$-splines for solving equations of the elasticity theory. As an example we consider the solution to the equation of bending of a plate on a circle. $S$-spline is a piecewise-polynomial function. Its coefficients are defined by two conditions. The first part of the coefficients are defined by the smoothness of the spline. The rest are determined using the least-squares method. We consider class $C^4$ 7th degree $S$-splines.

    Просмотров за год: 4.
  9. Башашин М.В., Земляная Е.В., Рахмонов И.Р., Шукринов Ю.М., Атанасова П.Х., Волохова А.В.
    Вычислительная схема и параллельная реализация для моделирования системы длинных джозефсоновских переходов
    Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 593-604

    Рассматривается модель стека длинных джозефсоновских переходов (ДДП), состоящего из чередующихся сверхпроводящих слоев и слоев диэлектрика, с учетом индуктивной и емкостной связи между слоями. Модель описывается системой нелинейных дифференциальных уравнений в частных производных относительно разности фаз и напряжения между соседними сверхпроводящими слоями в стеке ДДП, с соответствующими начальными и граничными условиями. Численное решение этой системы уравнений основано на использовании стандартных трехточечных конечно-разностных формул для дискретной аппроксимации по пространственной координате и применении четырехшагового метода Рунге–Кутты для решения полученной задачи Коши. Разработанный параллельный алгоритм реализован на основе технологии MPI (Message Passing Interface). В работе дана математическая постановка задачи в рамках рассматриваемой модели, описаны вычислительная схема и методика расчета вольт-амперных характеристик системы ДДП, представлены два варианта параллельной реализации. Продемонстрировано влияние индуктивной и емкостной связи между ДДП на структуру вольт-амперной характеристики в рамках рассматриваемой модели. Представлены результаты методических расчетов с различными параметрами длины и количества джозефсоновских переходов в стеке ДДП в зависимости от количества задействованных параллельных вычислительных узлов. Расчеты выполнены на многопроцессорных кластерах HybriLIT и ЦИВК Многофункционального информационно-вычислительного комплекса Лаборатории информационных технологий Объединенного института ядерных исследований (Дубна). На основе полученных численных результатов обсуждается эффективность рассмотренных вариантов распределения вычислений для численного моделирования системы ДДП в параллельном режиме. Показано, что один из предложенных подходов приводит к ускорению вычислений до 9 раз по сравнению с расчетами в однопроцессорном режиме.

    Bashashin M.V., Zemlyanay E.V., Rahmonov I.R., Shukrinov J.M., Atanasova P.C., Volokhova A.V.
    Numerical approach and parallel implementation for computer simulation of stacked long Josephson Junctions
    Computer Research and Modeling, 2016, v. 8, no. 4, pp. 593-604

    We consider a model of stacked long Josephson junctions (LJJ), which consists of alternating superconducting and dielectric layers. The model takes into account the inductive and capacitive coupling between the neighbor junctions. The model is described by a system of nonlinear partial differential equations with respect to the phase differences and the voltage of LJJ, with appropriate initial and boundary conditions. The numerical solution of this system of equations is based on the use of standard three-point finite-difference formulae for discrete approximations in the space coordinate, and the applying the four-step Runge-Kutta method for solving the Cauchy problem obtained. Designed parallel algorithm is implemented by means of the MPI technology (Message Passing Interface). In the paper, the mathematical formulation of the problem is given, numerical scheme and a method of calculation of the current-voltage characteristics of the LJJ system are described. Two variants of parallel implementation are presented. The influence of inductive and capacitive coupling between junctions on the structure of the current-voltage characteristics is demonstrated. The results of methodical calculations with various parameters of length and number of Josephson junctions in the LJJ stack depending on the number of parallel computing nodes, are presented. The calculations have been performed on multiprocessor clusters HybriLIT and CICC of Multi-Functional Information and Computing Complex (Laboratory of Information Technologies, Joint Institute for Nuclear Research, Dubna). The numerical results are discussed from the viewpoint of the effectiveness of presented approaches of the LJJ system numerical simulation in parallel. It has been shown that one of parallel algorithms provides the 9 times speedup of calculations.

    Просмотров за год: 7. Цитирований: 6 (РИНЦ).
  10. Гайко В.А.
    Глобальный бифуркационный анализ рациональной системы Холлинга
    Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 537-545

    В статье рассматривается квартичное семейство планарных векторных полей, соответствующее рациональной системе Холлинга, которая моделирует динамику популяций типа «хищник–жертва» в данной экологической или биомедицинской системе и которая обобщает классическую систему Лотки–Вольтерры. В простейших математических моделях изменение концентрации жертв в единицу времени в расчете на одного хищника, которое характеризуется так называемой функцией отклика, прямо пропорционально концентрации жертв, т. е. функция отклика в этих моделях линейная. Это означает, что в системе нет насыщения хищников, когда количество жертв достаточно велико. Однако было бы более реалистично рассматривать нелинейные и ограниченные функции отклика, и в литературе действительно используются различные виды таких функций для моделирования отклика хищников. После алгебраических преобразований рациональную систему Холлинга можно записать в виде квартичной динамической системы. Для исследования характера и расположения особых точек в фазовой плоскости этой системы используется разработанный нами метод, смысл которого состоит в том, чтобы получить простейшую (хорошо известную) систему путем обращения в нуль некоторых параметров (обычно параметров, поворачивающих поле) исходной системы, а затем последовательно вводить эти параметры, изучая динамику особых точек (как конечных, так и бесконечно удаленных) в фазовой плоскости. Используя полученную информацию об особых точках и применяя наш геометрический подход к качественному анализу, мы изучаем бифуркации предельных циклов квартичной системы. Чтобы контролировать все бифуркации предельных циклов, особенно бифуркации кратных предельных циклов, необходимо знать свойства и комбинировать действия всех параметров, поворачивающих векторное поле системы. Это может быть сделано с помощью принципа окончания Уинтнера–Перко, согласно которому максимальное однопараметрическое семейство кратных предельных циклов заканчивается либо в особой точке, которая, как правило, имеет ту же кратность (цикличность), либо на сепаратрисном цикле, который также, как правило, имеет ту же кратность (цикличность). Применяя этот принцип, мы доказываем, что квадричная система (и соответствующая рациональная система Холлинга) может иметь не более двух предельных циклов, окружающих одну особую точку.

    Gaiko V.A.
    Global bifurcation analysis of a rational Holling system
    Computer Research and Modeling, 2017, v. 9, no. 4, pp. 537-545

    In this paper, we consider a quartic family of planar vector fields corresponding to a rational Holling system which models the dynamics of the populations of predators and their prey in a given ecological or biomedical system and which is a variation on the classical Lotka–Volterra system. For the latter system, the change of the prey density per unit of time per predator called the response function is proportional to the prey density. This means that there is no saturation of the predator when the amount of available prey is large. However, it is more realistic to consider a nonlinear and bounded response function, and in fact different response functions have been used in the literature to model the predator response. After algebraic transformations, the rational Holling system can be written in the form of a quartic dynamical system. To investigate the character and distribution of the singular points in the phase plane of the quartic system, we use our method the sense of which is to obtain the simplest (well-known) system by vanishing some parameters (usually field rotation parameters) of the original system and then to input these parameters successively one by one studying the dynamics of the singular points (both finite and infinite) in the phase plane. Using the obtained information on singular points and applying our geometric approach to the qualitative analysis, we study the limit cycle bifurcations of the quartic system. To control all of the limit cycle bifurcations, especially, bifurcations of multiple limit cycles, it is necessary to know the properties and combine the effects of all of the rotation parameters. It can be done by means of the Wintner–Perko termination principle stating that the maximal one-parameter family of multiple limit cycles terminates either at a singular point which is typically of the same multiplicity (cyclicity) or on a separatrix cycle which is also typically of the same multiplicity (cyclicity). Applying this principle, we prove that the quartic system (and the corresponding rational Holling system) can have at most two limit cycles surrounding one singular point.

    Просмотров за год: 11.
Страницы: следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.