Текущий выпуск Номер 1, 2024 Том 16

Все выпуски

Результаты поиска по 'singular point':
Найдено статей: 14
  1. Ракчеева Т.А.
    Полиполярная координация и симметрии
    Компьютерные исследования и моделирование, 2010, т. 2, № 4, с. 329-341

    Полиполярная система координат формируется семейством параметризованных по радиусу изофокусных kf-лемнискат. Как и классическая полярная система координат, она характеризует точку плоскости полиполярным радиусом ρ и полиполярным углом φ. Для любой связности семейство изометрических кривых  ρ = const – лемнискат и семейство градиентных кривых φ = const являются взаимно ортогональными сопряженными координатными семействами. Рассмотрены особенности полиполярной координации, ее симметрии, а также криволинейные симметрии на многофокусных лемнискатах.

    Rakcheeva T.A.
    Polypolar coordination and symmetries
    Computer Research and Modeling, 2010, v. 2, no. 4, pp. 329-341

    The polypolar system of coordinates is formed by a family of a parametrized on a radius isofocal of kf-lemniscates. As well as the classical polar system of coordinates, it characterizes a point of a plane by a polypolar radius ρ and polypolar angle φ. For anyone connectedness a family isometric of curve ρ = const – lemniscates and family gradient of curves φ = const – are mutually orthogonal conjugate coordinate families. The singularities of polypolar coordination, its symmetry, and also curvilinear symmetries on multifocal lemniscates are considered.

    Просмотров за год: 1.
  2. Гайко В.А.
    Глобальный бифуркационный анализ рациональной системы Холлинга
    Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 537-545

    В статье рассматривается квартичное семейство планарных векторных полей, соответствующее рациональной системе Холлинга, которая моделирует динамику популяций типа «хищник–жертва» в данной экологической или биомедицинской системе и которая обобщает классическую систему Лотки–Вольтерры. В простейших математических моделях изменение концентрации жертв в единицу времени в расчете на одного хищника, которое характеризуется так называемой функцией отклика, прямо пропорционально концентрации жертв, т. е. функция отклика в этих моделях линейная. Это означает, что в системе нет насыщения хищников, когда количество жертв достаточно велико. Однако было бы более реалистично рассматривать нелинейные и ограниченные функции отклика, и в литературе действительно используются различные виды таких функций для моделирования отклика хищников. После алгебраических преобразований рациональную систему Холлинга можно записать в виде квартичной динамической системы. Для исследования характера и расположения особых точек в фазовой плоскости этой системы используется разработанный нами метод, смысл которого состоит в том, чтобы получить простейшую (хорошо известную) систему путем обращения в нуль некоторых параметров (обычно параметров, поворачивающих поле) исходной системы, а затем последовательно вводить эти параметры, изучая динамику особых точек (как конечных, так и бесконечно удаленных) в фазовой плоскости. Используя полученную информацию об особых точках и применяя наш геометрический подход к качественному анализу, мы изучаем бифуркации предельных циклов квартичной системы. Чтобы контролировать все бифуркации предельных циклов, особенно бифуркации кратных предельных циклов, необходимо знать свойства и комбинировать действия всех параметров, поворачивающих векторное поле системы. Это может быть сделано с помощью принципа окончания Уинтнера–Перко, согласно которому максимальное однопараметрическое семейство кратных предельных циклов заканчивается либо в особой точке, которая, как правило, имеет ту же кратность (цикличность), либо на сепаратрисном цикле, который также, как правило, имеет ту же кратность (цикличность). Применяя этот принцип, мы доказываем, что квадричная система (и соответствующая рациональная система Холлинга) может иметь не более двух предельных циклов, окружающих одну особую точку.

    Gaiko V.A.
    Global bifurcation analysis of a rational Holling system
    Computer Research and Modeling, 2017, v. 9, no. 4, pp. 537-545

    In this paper, we consider a quartic family of planar vector fields corresponding to a rational Holling system which models the dynamics of the populations of predators and their prey in a given ecological or biomedical system and which is a variation on the classical Lotka–Volterra system. For the latter system, the change of the prey density per unit of time per predator called the response function is proportional to the prey density. This means that there is no saturation of the predator when the amount of available prey is large. However, it is more realistic to consider a nonlinear and bounded response function, and in fact different response functions have been used in the literature to model the predator response. After algebraic transformations, the rational Holling system can be written in the form of a quartic dynamical system. To investigate the character and distribution of the singular points in the phase plane of the quartic system, we use our method the sense of which is to obtain the simplest (well-known) system by vanishing some parameters (usually field rotation parameters) of the original system and then to input these parameters successively one by one studying the dynamics of the singular points (both finite and infinite) in the phase plane. Using the obtained information on singular points and applying our geometric approach to the qualitative analysis, we study the limit cycle bifurcations of the quartic system. To control all of the limit cycle bifurcations, especially, bifurcations of multiple limit cycles, it is necessary to know the properties and combine the effects of all of the rotation parameters. It can be done by means of the Wintner–Perko termination principle stating that the maximal one-parameter family of multiple limit cycles terminates either at a singular point which is typically of the same multiplicity (cyclicity) or on a separatrix cycle which is also typically of the same multiplicity (cyclicity). Applying this principle, we prove that the quartic system (and the corresponding rational Holling system) can have at most two limit cycles surrounding one singular point.

    Просмотров за год: 11.
  3. Гайко В.А.
    Глобальный бифуркационный анализ квартичной модели «хищник–жертва»
    Компьютерные исследования и моделирование, 2011, т. 3, № 2, с. 125-134

    Мы проводим глобальный бифуркационный анализ квартичной модели типа «хищник–жертва». В частности, исследуя глобальные бифуркации особых точек и предельных циклов, мы доказываем, что соответствующая динамическая система имеет не более двух предельных циклов.

    Gaiko V.A.
    Global bifurcation analysis of a quartic predator–prey model
    Computer Research and Modeling, 2011, v. 3, no. 2, pp. 125-134

    We complete the global bifurcation analysis of a quartic predator–prey model. In particular, studying global bifurcations of singular points and limit cycles, we prove that the corresponding dynamical system has at most two limit cycles.

    Просмотров за год: 5. Цитирований: 3 (РИНЦ).
  4. Fasondini M., Hale N., Spoerer R., Weideman J.A.C.
    Quadratic Padé Approximation: Numerical Aspects and Applications
    Компьютерные исследования и моделирование, 2019, т. 11, № 6, с. 1017-1031

    Padé approximation is a useful tool for extracting singularity information from a power series. A linear Padé approximant is a rational function and can provide estimates of pole and zero locations in the complex plane. A quadratic Padé approximant has square root singularities and can, therefore, provide additional information such as estimates of branch point locations. In this paper, we discuss numerical aspects of computing quadratic Padé approximants as well as some applications. Two algorithms for computing the coefficients in the approximant are discussed: a direct method involving the solution of a linear system (well-known in the mathematics community) and a recursive method (well-known in the physics community). We compare the accuracy of these two methods when implemented in floating-point arithmetic and discuss their pros and cons. In addition, we extend Luke’s perturbation analysis of linear Padé approximation to the quadratic case and identify the problem of spurious branch points in the quadratic approximant, which can cause a significant loss of accuracy. A possible remedy for this problem is suggested by noting that these troublesome points can be identified by the recursive method mentioned above. Another complication with the quadratic approximant arises in choosing the appropriate branch. One possibility, which is to base this choice on the linear approximant, is discussed in connection with an example due to Stahl. It is also known that the quadratic method is capable of providing reasonable approximations on secondary sheets of the Riemann surface, a fact we illustrate here by means of an example. Two concluding applications show the superiority of the quadratic approximant over its linear counterpart: one involving a special function (the Lambert $W$-function) and the other a nonlinear PDE (the continuation of a solution of the inviscid Burgers equation into the complex plane).

    Ключевые слова: Padé, approximation, numerical singularity detection.
    Fasondini M., Hale N., Spoerer R., Weideman J.A.C.
    Quadratic Padé Approximation: Numerical Aspects and Applications
    Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1017-1031

    Padé approximation is a useful tool for extracting singularity information from a power series. A linear Padé approximant is a rational function and can provide estimates of pole and zero locations in the complex plane. A quadratic Padé approximant has square root singularities and can, therefore, provide additional information such as estimates of branch point locations. In this paper, we discuss numerical aspects of computing quadratic Padé approximants as well as some applications. Two algorithms for computing the coefficients in the approximant are discussed: a direct method involving the solution of a linear system (well-known in the mathematics community) and a recursive method (well-known in the physics community). We compare the accuracy of these two methods when implemented in floating-point arithmetic and discuss their pros and cons. In addition, we extend Luke’s perturbation analysis of linear Padé approximation to the quadratic case and identify the problem of spurious branch points in the quadratic approximant, which can cause a significant loss of accuracy. A possible remedy for this problem is suggested by noting that these troublesome points can be identified by the recursive method mentioned above. Another complication with the quadratic approximant arises in choosing the appropriate branch. One possibility, which is to base this choice on the linear approximant, is discussed in connection with an example due to Stahl. It is also known that the quadratic method is capable of providing reasonable approximations on secondary sheets of the Riemann surface, a fact we illustrate here by means of an example. Two concluding applications show the superiority of the quadratic approximant over its linear counterpart: one involving a special function (the Lambert $W$-function) and the other a nonlinear PDE (the continuation of a solution of the inviscid Burgers equation into the complex plane).

  5. Гайко В.А., Савин С.И., Климчик А.С.
    Глобальные бифуркации предельных циклов полиномиальной системы Эйлера–Лагранжа–Льенара
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 693-705

    В данной статье, используя наш бифуркационно-геометрический подход, мы изучаем глобальную динамику и решаем проблему о максимальном числе и распределении предельных циклов (автоколебательных режимов, соответствующих состояниям динамического равновесия) в планарной полиномиальной механической системе типа Эйлера–Лагранжа–Льенара. Такие системы используются также для моделирования электротехнических, экологических, биомедицинских и других систем, что значительно облегчает исследование соответствующих реальных процессов и систем со сложной внутренней динамикой. Они используется, в частности, в механических системах с демпфированием и жесткостью. Существует ряд примеров технических систем, которые описываются с помощью квадратичного демпфирования в динамических моделях второго порядка. В робототехнике, например, квадратичное демпфирование появляется при управлении с прямой связью и в нелинейных устройствах, таких как приводы с переменным импедансом (сопротивлением). Приводы с переменным сопротивлением представляют особый интерес для совместной робототехники. Для исследования характера и расположения особых точек в фазовой плоскости полиномиальной системы Эйлера–Лагранжа–Льенара используется разработанный нами метод, смысл которого состоит в том, чтобы получить простейшую (хорошо известную) систему путем обращения в нуль некоторых параметров (обычно параметров, поворачивающих поле) исходной системы, а затем последовательно вводить эти параметры, изучая динамику особых точек в фазовой плоскости. Для исследования особых точек системы мы используем классические теоремы Пуанкаре об индексе, а также наш оригинальный геометрический подход, основанный на применении метода двух изоклин Еругина, что особенно эффективно при исследовании бесконечно удаленных особых точек. Используя полученную информацию об особых точках и применяя канонические системы с параметрами, поворачивающими векторное поле, а также используя геометрические свойства спиралей, заполняющих внутренние и внешние области предельных циклов, и применяя наш геометрический подход к качественному анализу, мы изучаем бифуркации предельных циклов рассматриваемой системы.

    Gaiko V.A., Savin S.I., Klimchik A.S.
    Global limit cycle bifurcations of a polynomial Euler–Lagrange–Liénard system
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 693-705

    In this paper, using our bifurcation-geometric approach, we study global dynamics and solve the problem of the maximum number and distribution of limit cycles (self-oscillating regimes corresponding to states of dynamical equilibrium) in a planar polynomial mechanical system of the Euler–Lagrange–Liйnard type. Such systems are also used to model electrical, ecological, biomedical and other systems, which greatly facilitates the study of the corresponding real processes and systems with complex internal dynamics. They are used, in particular, in mechanical systems with damping and stiffness. There are a number of examples of technical systems that are described using quadratic damping in second-order dynamical models. In robotics, for example, quadratic damping appears in direct-coupled control and in nonlinear devices, such as variable impedance (resistance) actuators. Variable impedance actuators are of particular interest to collaborative robotics. To study the character and location of singular points in the phase plane of the Euler–Lagrange–Liйnard polynomial system, we use our method the meaning of which is to obtain the simplest (well-known) system by vanishing some parameters (usually, field rotation parameters) of the original system and then to enter sequentially these parameters studying the dynamics of singular points in the phase plane. To study the singular points of the system, we use the classical Poincarй index theorems, as well as our original geometric approach based on the application of the Erugin twoisocline method which is especially effective in the study of infinite singularities. Using the obtained information on the singular points and applying canonical systems with field rotation parameters, as well as using the geometric properties of the spirals filling the internal and external regions of the limit cycles and applying our geometric approach to qualitative analysis, we study limit cycle bifurcations of the system under consideration.

  6. Горр Г.В., Щетинина Е.К.
    Новая форма уравнений в моделировании движения тяжелого твердого тела
    Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 873-884

    В динамике тяжелого твердого тела с неподвижной точкой известны различные типы редуцированных уравнений. Поскольку уравнения Эйлера–Пуассона допускают три первых интеграла, то в первом подходе получение новых форм уравнений, как правило, основано на этих интегралах. С их помощью можно систему шести скалярных уравнений преобразовать к системе третьего порядка. Однако редуцированная система при указанном подходе будет иметь особенность в виде радикальных выражений относительно компонент вектора угловой скорости. Это обстоятельство препятствует эффективному применению численных и асимптотических методов исследования решения. Во втором подходе используют различные виды переменных задачи: углы Эйлера, переменные Гамильтона и другие. При таком подходе уравнения Эйлера–Пуассона редуцируются либо к системе дифференциальных уравнений второго порядка, либо к системе, для которой эффективны специальные методы. В статье применен метод нахождения приведенной системы, основанный на введении вспомогательной переменной. Эта переменная характеризует смешанное произведение вектора момента количества движения, вектора вертикали и единичного вектора барицентрической оси тела. Получена система четырех дифференциальных уравнений, два из которых являются линейными дифференциальными уравнениями. Данная система не имеет аналога и не содержит особенностей, что позволяет применять к ней аналитические и численные методы исследования. Указанная форма уравнений применена для анализа специального класса решений в случае, когда центр масс тела принадлежит барицентрической оси. Рассмотрен вариант, при котором сумма квадратов двух компонент вектора кинематического момента относительно небарицентрических осей постоянна. Доказано, что этот вариант имеет место только в решении В.А. Стеклова. Найденная форма уравнений Эйлера–Пуассона может быть применена к исследованию условий существования других классов решений. Определенная перспектива полученных уравнений состоит в записи всех решений, для которых центр масс лежит на барицентрической оси, в переменных данной статьи. Это позволяет провести классификацию решений уравнений Эйлера–Пуассона в зависимости от порядка инвариантных соотношений. Поскольку указанная в статье система уравнений не имеет особенностей, то она может рассматриваться при компьютерном моделировании с помощью численных методов.

    Gorr G.V., Shchetinina E.K.
    A new form of differential equations in modeling of the motion of a heavy solid
    Computer Research and Modeling, 2016, v. 8, no. 6, pp. 873-884

    The different types of the reduced equations are known in the dynamics a heavy rigid body with a fixed point. Since the Euler−Poisson’s equations admit the three first integrals, then for the first approach the obtaining new forms of equations are usually based on these integrals. The system of six scalar equations can be transformed to a third-order system with them. However, in indicated approach the reduced system will have a feature as in the form of radical expressions a relatively the components of the angular velocity vector. This fact prevents the effective the effective application of numerical and asymptotic methods of solutions research. In the second approach the different types of variables in a problem are used: Euler’s angles, Hamilton’s variables and other variables. In this approach the Euler−Poisson’s equations are reduced to either the system of second-order differential equations, or the system for which the special methods are effective. In the article the method of finding the reduced system based on the introduction of an auxiliary variable is applied. This variable characterizes the mixed product of the angular momentum vector, the vector of vertical and the unit vector barycentric axis of the body. The system of four differential equations, two of which are linear differential equations was obtained. This system has no analog and does not contain the features that allows to apply to it the analytical and numerical methods. Received form of equations is applied for the analysis of a special class of solutions in the case when the center of mass of the body belongs to the barycentric axis. The variant in which the sum of the squares of the two components of the angular momentum vector with respect to not barycentric axes is constant. It is proved that this variant exists only in the Steklov’s solution. The obtained form of Euler−Poisson’s equations can be used to the investigation of the conditions of existence of other classes of solutions. Certain perspectives obtained equations consists a record of all solutions for which the center of mass is on barycentric axis in the variables of this article. It allows to carry out a classification solutions of Euler−Poisson’s equations depending on the order of invariant relations. Since the equations system specified in the article has no singularities, it can be considered in computer modeling using numerical methods.

    Просмотров за год: 6.
  7. Кожевников В.С., Матюшкин И.В., Черняев Н.В.
    Анализ основного уравнения физико-статистического подхода теории надежности технических систем
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 721-735

    Проведена верификация физико-статистического подхода теории надежности для простейших случаев, показавшая его правомочность. Представлено аналитическое решение одномерного основного уравнения физико-статистического подхода в предположении стационарной скорости деградации. С математической точки зрения это уравнение является известным уравнением непрерывности, где роль плотности вещества играет плотность функции распределения изделий в фазовом пространстве его характеристик, а роль скорости жидкости играет интенсивность (скорость) деградационных процессов. Последняя связывает общий формализм с конкретикой механизмов деградации. С помощью метода характеристик аналитически рассмотрены случаи постоянной по координате, линейной и квадратичной скоростей деградации. В первых двух случаях результаты соответствуют физической интуиции. При постоянной скорости деградации форма начального распределения сохраняется, а само оно равномерно сдвигается от центра. При линейной скорости деградации распределение либо сужается вплоть до узкого пика (в пределе сингулярного), либо расширяется, при этом максимум сдвигается на периферию с экспоненциально растущей скоростью. Форма распределения также сохраняется с точностью до параметров. Для начального нормального распределения аналитически получены координаты наибольшего значения максимума распределения при его возвратном движении.

    В квадратичном случае формальное решение демонстрирует контринтуитивное поведение. Оно заключается в том, что решение однозначно определено лишь на части бесконечной полуплоскости, обращается в нуль вместе со всеми производными на границе и неоднозначно при переходе за границу. Если продолжить его на другую область в соответствии с аналитическим решением, то оно имеет двухгорбый вид, сохраняет количество вещества и, что лишено физического смысла, периодично во времени. Если продолжить его нулем, то нарушается свойство консервативности. Аномальности квадратичного случая дается объяснение, хотя и нестрогое, через аналогию движения материальной точки с ускорением, пропорциональным квадрату скорости. Здесь мы имеем дело с математическим курьезом. Для всех случаев приведены численные расчеты. Дополнительно рассчитываются энтропия вероятностного распределения и функция надежности, а также прослеживается их корреляционная связь.

    Kozhevnikov V.S., Matyushkin I.V., Chernyaev N.V.
    Analysis of the basic equation of the physical and statistical approach within reliability theory of technical systems
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 721-735

    Verification of the physical-statistical approach within reliability theory for the simplest cases was carried out, which showed its validity. An analytical solution of the one-dimensional basic equation of the physicalstatistical approach is presented under the assumption of a stationary degradation rate. From a mathematical point of view this equation is the well-known continuity equation, where the role of density is played by the density distribution function of goods in its characteristics phase space, and the role of fluid velocity is played by intensity (rate) degradation processes. The latter connects the general formalism with the specifics of degradation mechanisms. The cases of coordinate constant, linear and quadratic degradation rates are analyzed using the characteristics method. In the first two cases, the results correspond to physical intuition. At a constant rate of degradation, the shape of the initial distribution is preserved, and the distribution itself moves equably from the zero. At a linear rate of degradation, the distribution either narrows down to a narrow peak (in the singular limit), or expands, with the maximum shifting to the periphery at an exponentially increasing rate. The distribution form is also saved up to the parameters. For the initial normal distribution, the coordinates of the largest value of the distribution maximum for its return motion are obtained analytically.

    In the quadratic case, the formal solution demonstrates counterintuitive behavior. It consists in the fact that the solution is uniquely defined only on a part of an infinite half-plane, vanishes along with all derivatives on the boundary, and is ambiguous when crossing the boundary. If you continue it to another area in accordance with the analytical solution, it has a two-humped appearance, retains the amount of substance and, which is devoid of physical meaning, periodically over time. If you continue it with zero, then the conservativeness property is violated. The anomaly of the quadratic case is explained, though not strictly, by the analogy of the motion of a material point with an acceleration proportional to the square of velocity. Here we are dealing with a mathematical curiosity. Numerical calculations are given for all cases. Additionally, the entropy of the probability distribution and the reliability function are calculated, and their correlation is traced.

  8. Рукавишников В.А., Рукавишников А.В.
    Метод численного решения одной стационарной задачи гидродинамики в конвективной форме в $L$-образной области
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1291-1306

    Большой класс задач описывает физические процессы, протекающие в невыпуклых областях, содержащих угол больший 180 градусов на границе. Решение в окрестности такого угла сингулярно, а его отыскание, при использовании классических подходов, влечет за собой потерю точности. В представленной работе рассмотрены стационарные, линеаризованные с помощью итераций Пикара несжимаемые уравнения Навье – Стокса течения вязкой жидкости в конвективной форме в $L$-образной области. Определено $R_\nu$-обобщенное решение задачи в специальных множествах весовых пространств. Для нахождения приближенного $R_\nu$-обобщенного решения построен специальный метод конечных элементов. Во-первых, пространства конечно-элементных функций удовлетворяют закону сохранения массы в сильном смысле, то есть в узлах сетки. Для этой цели используется Скотт – Вогелиус конечно-элементная пара. Выполнение закона сохранения массы ведет к отысканию более точного с физической точки зрения решения. Во-вторых, базисные функции конечномерных пространств дополнены весовыми функциями как множителями, которые совпадают с расстоянием от точки до вершины тупого угла в $\delta$-окрестности точки сингулярности и радиусом $\delta$ вне ее. Степень весовой функции, как и параметр $\nu$ в определении $R_\nu$-обобщенного решения, так и радиус $\delta$-окрестности точки сингулярности являются свободными параметрами метода. Специально подобранная их комбинация приводит к увеличению порядка сходимости приближенного решения к точному решению задачи почти в два раза по сравнению с классическими подходами и достигает единицы по шагу сетки в нормах весовых пространств Соболева. Таким образом, установлено, что скорость сходимости не зависит от величины угла.

    Rukavishnikov V.A., Rukavishnikov A.V.

    The method of numerical solution of the one stationary hydrodynamics problem in convective form in $L$-shaped domain
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1291-1306

    An essential class of problems describes physical processes occurring in non-convex domains containing a corner greater than 180 degrees on the boundary. The solution in a neighborhood of a corner is singular and its finding using classical approaches entails a loss of accuracy. In the paper, we consider stationary, linearized by Picard’s iterations, Navier – Stokes equations governing the flow of a incompressible viscous fluid in the convection form in $L$-shaped domain. An $R_\nu$-generalized solution of the problem in special sets of weighted spaces is defined. A special finite element method to find an approximate $R_\nu$-generalized solution is constructed. Firstly, functions of the finite element spaces satisfy the law of conservation of mass in the strong sense, i.e. at the grid nodes. For this purpose, Scott – Vogelius element pair is used. The fulfillment of the condition of mass conservation leads to the finding more accurate, from a physical point of view, solution. Secondly, basis functions of the finite element spaces are supplemented by weight functions. The degree of the weight function, as well as the parameter $\nu$ in the definition of an $R_\nu$-generalized solution, and a radius of a neighborhood of the singularity point are free parameters of the method. A specially selected combination of them leads to an increase almost twice in the order of convergence rate of an approximate solution to the exact one in relation to the classical approaches. The convergence rate reaches the first order by the grid step in the norms of Sobolev weight spaces. Thus, numerically shown that the convergence rate does not depend on the corner value.

  9. Соболев Е.В., Тихонов Д.А.
    Численное исследование сингулярности интегральных уравнений теории жидкостей в приближении RISM
    Компьютерные исследования и моделирование, 2010, т. 2, № 1, с. 51-62

    Предложена схема построения параметрического портрета интегральных уравнений теории жидкостей в приближении RISM. Для нахождения всех связных решений использован метод продолжения по параметру. Получены уравнения для молекулярных жидкостей, сводимых по соображениям симметрии к модели двуцентровых молекул. Для преодоления особых точек использован переход к зависимости уравнений RISM от обратной сжимаемости. С помощью предложенного метода проведены численные расчеты изотерм обратной сжимаемости метана для трех уравнений замыкания. В случае частично линеаризованного гиперцепного замыкания не обнаружено бифуркации решений. Для других замыканий получены бифуркации решений и обнаружено поведение, которое не характерно для модели простых жидкостей. В случае замыкания Перкуса-Йевика в области низких температур получены нефизические решения. Для гиперцепного замыкания в области температур выше критической точки получена дополнительная ветвь решений с изломом в точке бифуркации.

    Sobolev E.V., Tikhonov D.A.
    Numerical analyses of singularity in the integral equation of theory of liquids in the RISM approximation
    Computer Research and Modeling, 2010, v. 2, no. 1, pp. 51-62

    An approach to evaluation of a parametric portrait of integral equations of the theory of liquids in the RISM approximation was proposed. To obtain all associated solutions the continuation method was used. The equations reduced to a two-centered molecule model for symmetry reasons were deduced for molecular liquids. For molecular liquids, some equations were obtained which could be reduced, for symmetry reasons, to a two-center molecular model. To avoid critical points we changed the dependence of RISM-equations on reverse compressibility. The suggested method was used to perform numerical computations of methane reverse compressibility isotherms with three closures. No bifurcation of solutions was observed in the case of the partially linearized hypernetted chain closure. For other closures bifurcations of solutions were obtained and the model behavior nontypical for simple liquids was observed. In the case of Percus-Yevick closure nonphysical solutions were obtained at low temperature and density. Additional solution branch with a kink in the bifurcation point was obtained in the case of hypernetted chain closure at temperature above the critical point.

    Просмотров за год: 4.
  10. Спиридонов А.О., Карчевский Е.М.
    Mathematical and numerical modeling of a drop-shaped microcavity laser
    Компьютерные исследования и моделирование, 2019, т. 11, № 6, с. 1083-1090

    This paper studies electromagnetic fields, frequencies of lasing, and emission thresholds of a drop-shaped microcavity laser. From the mathematical point of view, the original problem is a nonstandard two-parametric eigenvalue problem for the Helmholtz equation on the whole plane. The desired positive parameters are the lasing frequency and the threshold gain, the corresponding eigenfunctions are the amplitudes of the lasing modes. This problem is usually referred to as the lasing eigenvalue problem. In this study, spectral characteristics are calculated numerically, by solving the lasing eigenvalue problem on the basis of the set of Muller boundary integral equations, which is approximated by the Nystr¨om method. The Muller equations have weakly singular kernels, hence the corresponding operator is Fredholm with zero index. The Nyström method is a special modification of the polynomial quadrature method for boundary integral equations with weakly singular kernels. This algorithm is accurate for functions that are well approximated by trigonometric polynomials, for example, for eigenmodes of resonators with smooth boundaries. This approach leads to a characteristic equation for mode frequencies and lasing thresholds. It is a nonlinear algebraic eigenvalue problem, which is solved numerically by the residual inverse iteration method. In this paper, this technique is extended to the numerical modeling of microcavity lasers having a more complicated form. In contrast to the microcavity lasers with smooth contours, which were previously investigated by the Nyström method, the drop has a corner. We propose a special modification of the Nyström method for contours with corners, which takes also the symmetry of the resonator into account. The results of numerical experiments presented in the paper demonstrate the practical effectiveness of the proposed algorithm.

    Spiridonov A.O., Karchevskii E.M.
    Mathematical and numerical modeling of a drop-shaped microcavity laser
    Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1083-1090

    This paper studies electromagnetic fields, frequencies of lasing, and emission thresholds of a drop-shaped microcavity laser. From the mathematical point of view, the original problem is a nonstandard two-parametric eigenvalue problem for the Helmholtz equation on the whole plane. The desired positive parameters are the lasing frequency and the threshold gain, the corresponding eigenfunctions are the amplitudes of the lasing modes. This problem is usually referred to as the lasing eigenvalue problem. In this study, spectral characteristics are calculated numerically, by solving the lasing eigenvalue problem on the basis of the set of Muller boundary integral equations, which is approximated by the Nystr¨om method. The Muller equations have weakly singular kernels, hence the corresponding operator is Fredholm with zero index. The Nyström method is a special modification of the polynomial quadrature method for boundary integral equations with weakly singular kernels. This algorithm is accurate for functions that are well approximated by trigonometric polynomials, for example, for eigenmodes of resonators with smooth boundaries. This approach leads to a characteristic equation for mode frequencies and lasing thresholds. It is a nonlinear algebraic eigenvalue problem, which is solved numerically by the residual inverse iteration method. In this paper, this technique is extended to the numerical modeling of microcavity lasers having a more complicated form. In contrast to the microcavity lasers with smooth contours, which were previously investigated by the Nyström method, the drop has a corner. We propose a special modification of the Nyström method for contours with corners, which takes also the symmetry of the resonator into account. The results of numerical experiments presented in the paper demonstrate the practical effectiveness of the proposed algorithm.

Страницы: следующая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.