Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Нейросетевая модель определения функционального состояния опьянения человека в решении отдельных задач обеспечения транспортной безопасности
Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 285-293В данной статье решается задача определения функционального состояния опьянения водителей автотранспортных средств. Ее решение актуально в сфере транспортной безопасности при прохождении предрейсовых медицинских осмотров. Решение задачи основано на применении метода пупиллометрии, позволяющего судить о состоянии водителя по его зрачковой реакции на изменение освещенности. Производится постановка задачи определения состояния опьянения водителя по анализу значений параметров пупиллограммы — временного ряда, характеризующего изменение размеров зрачка при воздействии кратковременного светового импульса. Для анализа пупиллограмм предлагается использовать нейронную сеть. Разработана нейросетевая модель определения функционального состояния опьянения водителей. Для ее обучения использованы специально подготовленные выборки данных, представляющие собой сгруппированные по двум классам функциональных состояний водителей значения следующих параметров зрачковых реакций: диаметр начальный, диаметр минимальный, диаметр половинного сужения, диаметр конечный, амплитуда сужения, скорость сужения, скорость расширения, латентное время реакции, время сужения, время расширения, время половинного сужения и время половинного расширения. Приводится пример исходных данных. На основе их анализа построена нейросетевая модель в виде однослойного персептрона, состоящего из двенадцати входных нейронов, двадцати пяти нейронов скрытого слоя и одного выходного нейрона. Для повышения адекватности модели методом ROC-анализа определена оптимальная точка отсечения классов решений на выходе нейронной сети. Предложена схема определения состояния опьянения водителей, включающая следующие этапы: видеорегистрация зрачковой реакции, построение пупиллограммы, вычисление значений ее параметров, анализ данных на основе нейросетевой модели, классификация состояния водителя как «норма» или «отклонение от нормы», принятие решений по проверяемому лицу. Медицинскому работнику, проводящему осмотр водителя, представляется нейросетевая оценка его состояния опьянения. На основе данной оценки производится заключение о допуске или отстранении водителя от управления транспортным средством. Таким образом, нейросетевая модель решает задачу повышения эффективности проведения предрейсового медицинского осмотра за счет повышения достоверности принимаемых решений.
Ключевые слова: нейросетевая модель, пупиллометрия, зрачковая реакция, предрейсовый медицинский осмотр, функциональное состояние опьянения водителя, принятие решений.
Neural network model of human intoxication functional state determining in some problems of transport safety solution
Computer Research and Modeling, 2018, v. 10, no. 3, pp. 285-293Просмотров за год: 42. Цитирований: 2 (РИНЦ).This article solves the problem of vehicles drivers intoxication functional statedetermining. Its solution is relevant in the transport security field during pre-trip medical examination. The problem solution is based on the papillomometry method application, which allows to evaluate the driver state by his pupillary reaction to illumination change. The problem is to determine the state of driver inebriation by the analysis of the papillogram parameters values — a time series characterizing the change in pupil dimensions upon exposure to a short-time light pulse. For the papillograms analysis it is proposed to use a neural network. A neural network model for determining the drivers intoxication functional state is developed. For its training, specially prepared data samples are used which are the values of the following parameters of pupillary reactions grouped into two classes of functional states of drivers: initial diameter, minimum diameter, half-constriction diameter, final diameter, narrowing amplitude, rate of constriction, expansion rate, latent reaction time, the contraction time, the expansion time, the half-contraction time, and the half-expansion time. An example of the initial data is given. Based on their analysis, a neural network model is constructed in the form of a single-layer perceptron consisting of twelve input neurons, twenty-five neurons of the hidden layer, and one output neuron. To increase the model adequacy using the method of ROC analysis, the optimal cut-off point for the classes of solutions at the output of the neural network is determined. A scheme for determining the drivers intoxication state is proposed, which includes the following steps: pupillary reaction video registration, papillogram construction, parameters values calculation, data analysis on the base of the neural network model, driver’s condition classification as “norm” or “rejection of the norm”, making decisions on the person being audited. A medical worker conducting driver examination is presented with a neural network assessment of his intoxication state. On the basis of this assessment, an opinion on the admission or removal of the driver from driving the vehicle is drawn. Thus, the neural network model solves the problem of increasing the efficiency of pre-trip medical examination by increasing the reliability of the decisions made.
-
Обзор по тематике клеточных автоматов на базе современных отечественных публикаций
Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 9-57Проведен анализ отечественных публикаций за 2013–2017 гг. включительно, посвященных клеточным автоматам (КА). Большая их часть связана с математическим моделированием. Наукометрическими графиками за 1990–2017 гг. доказана актуальность тематики. Обзор позволяет выделить персоналии и научные направления/школы в современной российской науке, выявить их оригинальность или вторичность по сравнению с мировым уровнем. За счет выбора национальной, а не мировой, базы публикаций обзор претендует на полноту (из 526 просмотренных ссылок научным значением обладают около 200).
В приложении к обзору даются первичные сведения о КА — игра «Жизнь», теорема о садах Эдема, элементарные КА (вместе с диаграммой де Брюина), блочные КА Марголуса, КА с альтернацией. Причем акцентируется внимание на трех важных для моделирования семантиках КА — традициях фон Неймана, Цузе и Цетлина, а также показывается родство с концепциями нейронных сетей и сетей Петри. Выделены условные 10 работ по КА, с которыми должен быть знаком любой специалист по КА. Некоторые важные работы 1990-х гг. и более поздние перечислены во введении.
Затем весь массив публикаций разбит на рубрики: «Модификации КА и другие сетевые модели» (29 %), «Математические свойства КА и связь с математикой» (5 %), «Аппаратные реализации» (3 %), «Программные реализации» (5 %), «Обработка данных, распознавание и криптография» (8 %), «Механика, физика и химия» (20 %), «Биология, экология и медицина» (15 %), «Экономика, урбанистика и социология» (15 %). В скобках указана доля тематики в массиве. Отмечается рост публикаций по КА в гуманитарной сфере, а также появление гибридных подходов, уводящих в сторону от классических КА.
Ключевые слова: клеточные автоматы, наукометрия, параллельные вычисления, распределенные системы, математическое моделирование.
Cellular automata review based on modern domestic publications
Computer Research and Modeling, 2019, v. 11, no. 1, pp. 9-57Просмотров за год: 58.The paper contains the analysis of the domestic publications issued in 2013–2017 years and devoted to cellular automata. The most of them concern on mathematical modeling. Scientometric schedules for 1990–2017 years have proved relevance of subject. The review allows to allocate the main personalities and the scientific directions/schools in modern Russian science, to reveal their originality or secondness in comparison with world science. Due to the authors choice of national publications basis instead of world, the paper claims the completeness and the fact is that about 200 items from the checked 526 references have an importance for science.
In the Annex to the review provides preliminary information about CA — the Game of Life, a theorem about gardens of Eden, elementary CAs (together with the diagram of de Brujin), block Margolus’s CAs, alternating CAs. Attention is paid to three important for modeling semantic traditions of von Neumann, Zuse and Zetlin, as well as to the relationship with the concepts of neural networks and Petri nets. It is allocated conditional 10 works, which should be familiar to any specialist in CA. Some important works of the 1990s and later are listed in the Introduction.
Then the crowd of publications is divided into categories: the modification of the CA and other network models (29 %), Mathematical properties of the CA and the connection with mathematics (5 %), Hardware implementation (3 %), Software implementation (5 %), Data Processing, recognition and Cryptography (8 %), Mechanics, physics and chemistry (20 %), Biology, ecology and medicine (15 %), Economics, urban studies and sociology (15 %). In parentheses the share of subjects in the array are indicated. There is an increase in publications on CA in the humanitarian sphere, as well as the emergence of hybrid approaches, leading away from the classic CA definition.
-
Нейросетевой подход к исследованию задач оптимального управления
Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 539-557В статье предлагается метод исследования задач оптимального управления с использованием нейронных сетей. Рассмотрение проводится на примере задачи контроля качества поверхностных вод. При моделировании системы контроля качества поверхностных вод используются теоретико-игровой и иерархический подходы. Исследуется случай динамической двухуровневой системы управления качеством поверхностных вод, включающий ведущего и нескольких ведомых. Рассмотрение ведется с точки зрения ведомых. В этом случае между ними возникает неантагонистическая игра, в которой строится равновесие Нэша. С математической точки зрения при этом решается задача оптимального управления при наличии фазовых ограничений. Для ее аналитического исследования в работе используется принцип максимума Понтрягина, на основе которого формулируются условия оптимальности. Для решения возникающих при этом систем дифференциальных уравнений используется обучаемая нейронная сеть прямого распространения (feedforward). Приводится обзор существующих методов решения подобных задач с помощью нейронных сетей и методов обучения нейронных сетей. Для оценки ошибки решения, получаемого с помощью нейронной сети, предлагается использовать метод анализа дефекта решения, адаптированный для нейронных сетей. Это позволяет получить количественную оценку ошибки численного решения. Приведены примеры использования нейросетевого подхода для решения модельной задачи оптимального управления и задачи контроля качества поверхностных вод. Полученные в этих примерах результаты сравниваются с точным решением и с результатами, полученными методом стрельбы. Во всех случаях величина ошибки оценивается методом анализа дефекта решения. Нейросетевым методом проводится также исследование системы контроля качества поверхностных вод для случаев, когда решение задачи другими методами получить не удалось (большой временной промежуток моделирования и случай нескольких агентов). В статье иллюстрируются возможность использования нейросетевого подхода для решения различных задач оптимального управления и дифференциальных игр, а также возможность количественной оценки точности решения. Полученные результаты численных экспериментов позволяют говорить о необходимости введения регулирующего органа для достижения устойчивого развития системы.
Ключевые слова: оптимальное управление, дифференциальные игры, нейронная сеть, равновесие Нэша, принцип максимума Понтрягина.
Neural network methods for optimal control problems
Computer Research and Modeling, 2022, v. 14, no. 3, pp. 539-557In this study we discuss methods to solve optimal control problems based on neural network techniques. We study hierarchical dynamical two-level system for surface water quality control. The system consists of a supervisor (government) and a few agents (enterprises). We consider this problem from the point of agents. In this case we solve optimal control problem with constraints. To solve this problem, we use Pontryagin’s maximum principle, with which we obtain optimality conditions. To solve emerging ODEs, we use feedforward neural network. We provide a review of existing techniques to study such problems and a review of neural network’s training methods. To estimate the error of numerical solution, we propose to use defect analysis method, adapted for neural networks. This allows one to get quantitative error estimations of numerical solution. We provide examples of our method’s usage for solving synthetic problem and a surface water quality control model. We compare the results of this examples with known solution (when provided) and the results of shooting method. In all cases the errors, estimated by our method are of the same order as the errors compared with known solution. Moreover, we study surface water quality control problem when no solutions is provided by other methods. This happens because of relatively large time interval and/or the case of several agents. In the latter case we seek Nash equilibrium between agents. Thus, in this study we show the ability of neural networks to solve various problems including optimal control problems and differential games and we show the ability of quantitative estimation of an error. From the numerical results we conclude that the presence of the supervisor is necessary for achieving the sustainable development.
-
Алгоритм выбора структурных параметров искусственной нейронной сети и объема обучающей выборки при аппроксимации поведения динамического объекта
Компьютерные исследования и моделирование, 2015, т. 7, № 2, с. 243-251В статье сформулирован обобщенный подход к выбору значений структурных параметров искусственной нейронной сети (ИНС) и объема обучающий выборки, основанный на принципе минимизации количества элементов структуры ИНС и объема обучающей выборки при ограничении на значение показателя качества работы нейросетевой модели динамики объекта. Реализован алгоритм выбора структурных параметров ИНС и построения нейросетевой модели.
Проведена серия вычислительных экспериментов, демонстрирующая применимость алгоритма для построения моделей динамических объектов, в основе которых лежит нелинейная автокорреляционная нейронная сеть.Ключевые слова: модель динамического объекта, обучающая выборка, искусственная нейронная сеть, топология, обучение, оптимизация структуры искусственной нейронной сети.
Algorithm of artificial neural network architecture and training set size configuration within approximation of dynamic object behavior
Computer Research and Modeling, 2015, v. 7, no. 2, pp. 243-251Просмотров за год: 2. Цитирований: 8 (РИНЦ).The article presents an approach to configuration of an artificial neural network architecture and a training set size. Configuration is based on parameter minimization with constraints specifying neural network model quality criteria. The algorithm of artificial neural network architecture and training set size configuration is applied to dynamic object artificial neural network approximation.
Series of computational experiments were performed. The method is applicable to construction of dynamic object models based on non-linear autocorrelation neural networks. -
Нейросетевой анализ транспортных потоков городских агломераций на основе данных публичных камер видеообзора
Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 305-318Адекватное моделирование сложной динамики городских транспортных потоков требует сбора больших объемов данных для определения характера соответствующих моделей и их калибровки. Вместе с тем оборудование специализированных постов наблюдения является весьма затратным мероприятием и не всегда технически возможно. Совокупность этих факторов приводит к недостаточному фактографическому обеспечению как систем оперативного управления транспортными потоками, так и специалистов по транспортному планированию с очевидными последствиями для качества принимаемых решений. В качестве способа обеспечить массовый сбор данных хотя бы для качественного анализа ситуаций достаточно давно применяется обзорные видеокамеры, транслирующие изображения в определенные ситуационные центры, где соответствующие операторы осуществляют контроль и управление процессами. Достаточно много таких обзорных камер предоставляют данные своих наблюдений в общий доступ, что делает их ценным ресурсом для транспортных исследований. Вместе с тем получение количественных данных с таких камер сталкивается с существенными проблемами, относящимися к теории и практике обработки видеоизображений, чему и посвящена данная работа. В работе исследуется практическое применение некоторых мейнстримовских нейросетевых технологий для определения основных характеристик реальных транспортных потоков, наблюдаемых камерами общего доступа, классифицируются возникающие при этом проблемы и предлагаются их решения. Для отслеживания объектов дорожного движения применяются варианты сверточных нейронных сетей, исследуются способы их применения для определения базовых характеристик транспортных потоков. Простые варианты нейронной сети используются для автоматизации при получении обучающих примеров для более глубокой нейронной сети YOLOv4. Сеть YOLOv4 использована для оценки характеристик движения (скорость, плотность потока) для различных направлений с записей камер видеонаблюдения.
Ключевые слова: искусственные нейронные сети, машинное зрение, машинное обучение, сопровождение объекта, сверточные нейронные сети.
Neural network analysis of transportation flows of urban aglomeration using the data from public video cameras
Computer Research and Modeling, 2021, v. 13, no. 2, pp. 305-318Correct modeling of complex dynamics of urban transportation flows requires the collection of large volumes of empirical data to specify types of the modes and their identification. At the same time, setting a large number of observation posts is expensive and technically not always feasible. All this results in insufficient factographic support for the traffic control systems as well as for urban planners with the obvious consequences for the quality of their decisions. As one of the means to provide large-scale data collection at least for the qualitative situation analysis, the wide-area video cameras are used in different situation centers. There they are analyzed by human operators who are responsible for observation and control. Some video cameras provided their videos for common access, which makes them a valuable resource for transportation studies. However, there are significant problems with getting qualitative data from such cameras, which relate to the theory and practice of image processing. This study is devoted to the practical application of certain mainstream neuro-networking technologies for the estimation of essential characteristics of actual transportation flows. The problems arising in processing these data are analyzed, and their solutions are suggested. The convolution neural networks are used for tracking, and the methods for obtaining basic parameters of transportation flows from these observations are studied. The simplified neural networks are used for the preparation of training sets for the deep learning neural network YOLOv4 which is later used for the estimation of speed and density of automobile flows.
-
Сверточные нейронные сети семейства YOLO для мобильных систем компьютерного зрения
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 615-631Работа посвящена анализу известных классов моделей сверточных нейронных сетей и исследованию выбранных из них перспективных моделей для детектирования летающих объектов на изображениях. Под детектированием объектов (англ. — Object Detection) здесь понимаются обнаружение, локализация в пространстве и классификация летающих объектов. Комплексное исследование выбранных перспективных моделей сверточных нейронных сетей проводится с целью выявления наиболее эффективных из них для создания мобильных систем компьютерного зрения реального времени. Показано, что наиболее приемлемыми для детектирования летающих объектов на изображениях с учетом сформулированных требований к мобильным системам компьютерного зрения реального времени и, соответственно, к лежащим в их основе моделям сверточных нейронных сетей являются модели семейства YOLO, причем наиболее перспективными следует считать пять моделей из этого семейства: YOLOv4, YOLOv4-Tiny, YOLOv4-CSP, YOLOv7 и YOLOv7-Tiny. Для обучения, валидации и комплексного исследования этих моделей разработан соответствующий набор данных. Каждое размеченное изображение из набора данных включает от одного до нескольких летающих объектов четырех классов: «птица», «беспилотный летательный аппарат самолетного типа», «беспилотный летательный аппарат вертолетного типа» и «неизвестный объект» (объекты в воздушном пространстве, не входящие в первые три класса). Исследования показали, что все модели сверточных нейронных сетей по скорости детектирования объектов на изображении (по скорости вычисления модели) значительно превышают заданное пороговое значение, однако только модели YOLOv4-CSP и YOLOv7, причем только частично, удовлетворяют требованию по точности детектирования (классификации) летающих объектов. Наиболее сложным для детектирования классом объектов является класс «птица». При этом выявлено, что наиболее эффективной по точности классификации является модель YOLOv7, модель YOLOv4-CSP на втором месте. Обе модели рекомендованы к использованию в составе мобильной системы компьютерного зрения реального времени при условии увеличения в созданном наборе данных числа изображений с объектами класса «птица» и дообучения этих моделей с тем, чтобы они удовлетворяли требованию по точности детектирования летающих объектов каждого из четырех классов.
Ключевые слова: детектирование летающих объектов на изображениях, сверточная нейронная сеть, YOLO, мобильная система компьютерного зрения.
Convolutional neural networks of YOLO family for mobile computer vision systems
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 615-631The work analyzes known classes of convolutional neural network models and studies selected from them promising models for detecting flying objects in images. Object detection here refers to the detection, localization in space and classification of flying objects. The work conducts a comprehensive study of selected promising convolutional neural network models in order to identify the most effective ones from them for creating mobile real-time computer vision systems. It is shown that the most suitable models for detecting flying objects in images, taking into account the formulated requirements for mobile real-time computer vision systems, are models of the YOLO family, and five models from this family should be considered: YOLOv4, YOLOv4-Tiny, YOLOv4-CSP, YOLOv7 and YOLOv7-Tiny. An appropriate dataset has been developed for training, validation and comprehensive research of these models. Each labeled image of the dataset includes from one to several flying objects of four classes: “bird”, “aircraft-type unmanned aerial vehicle”, “helicopter-type unmanned aerial vehicle”, and “unknown object” (objects in airspace not included in the first three classes). Research has shown that all convolutional neural network models exceed the specified threshold value by the speed of detecting objects in the image, however, only the YOLOv4-CSP and YOLOv7 models partially satisfy the requirements of the accuracy of detection of flying objects. It was shown that most difficult object class to detect is the “bird” class. At the same time, it was revealed that the most effective model is YOLOv7, the YOLOv4-CSP model is in second place. Both models are recommended for use as part of a mobile real-time computer vision system with condition of additional training of these models on increased number of images with objects of the “bird” class so that they satisfy the requirement for the accuracy of detecting flying objects of each four classes.
-
Моделирование свойств конструкционного композитного материала, армированного углеродными нанотрубками, с использованием перцептронных комплексов
Компьютерные исследования и моделирование, 2015, т. 7, № 2, с. 253-262Использование алгоритмов, основанных на нейронных сетях, может оказаться неэффективным при малых объемах экспериментальных данных. Авторы статьи рассматривают решение данной проблемы на примере моделирования свойств керамического композита, армированного углеродными нанотрубками, с помощью перцептронного комплекса. Такой подход позволил получить математическое описание объекта исследования при минимальном объеме и неполноте исходной информации, полученной в ходе экспериментов (объем необходимой экспериментальной выборки уменьшился в 2–3.3 раза). В статье рассмотрены различные варианты структур перцептронных комплексов. Выявлено, что наиболее подходящей структурой обладает перцептронный комплекс с проскоком двух входных переменных. Относительная ошибка составила всего 6%. Выбранный перцептронный комплекс показал свою эффективность для предсказания свойств керамического композита. Относительные ошибки по выходным компонентам составили 0.3%, 4.2%, 0.4%, 2.9% и 11.8%.
Ключевые слова: нейронная сеть, перцептронный комплекс, математическая модель, моделирование, керамический композит, углеродные нанотрубки, прочность на изгиб.
Simulation of properties of composite materials reinforced by carbon nanotubes using perceptron complexes
Computer Research and Modeling, 2015, v. 7, no. 2, pp. 253-262Просмотров за год: 2. Цитирований: 1 (РИНЦ).Use of algorithms based on neural networks can be inefficient for small amounts of experimental data. Authors consider a solution of this problem in the context of modelling of properties of ceramic composite materials reinforced with carbon nanotubes using perceptron complex. This approach allowed us to obtain a mathematical description of the object of study with a minimal amount of input data (the amount of necessary experimental samples decreased 2–3.3 times). Authors considered different versions of perceptron complex structures. They found that the most appropriate structure has perceptron complex with breakthrough of two input variables. The relative error was only 6%. The selected perceptron complex was shown to be effective for predicting the properties of ceramic composites. The relative errors for output components were 0.3%, 4.2%, 0.4%, 2.9%, and 11.8%.
-
Метод построения прогнозной нейросетевой модели временного ряда
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 737-756В данной статье рассматривается метод построения прогнозной нейросетевой модели временного ряда, основанный на определении состава входных переменных, построения обучающей выборки и самого обучения с использованием метода обратного распространения ошибки. Традиционные методы построения прогнозных моделей временного ряда (авторегрессионной модели, модели скользящего среднего или модели авторегрессии – скользящего среднего) позволяют аппроксимировать временной ряд линейной зависимостью текущего значения выходной переменной от некоторого количества ее предыдущих значений. Такое ограничение, как линейность зависимости, приводит к значительным ошибкам при прогнозировании.
Технологии интеллектуального анализа с применением нейросетевого моделирования позволяют аппроксимировать временной ряд нелинейной зависимостью. Причем процесс построения нейросетевой модели (определение состава входных переменных, числа слоев и количества нейронов в слоях, выбор функций активации нейронов, определение оптимальных значений весов связей нейронов) позволяет получить прогнозную модель в виде аналитической нелинейной зависимости.
Одним из ключевых моментов при построении нейросетевых моделей в различных прикладных областях, влияющих на ее адекватность, является определение состава ее входных переменных. Состав входных переменных традиционно выбирается из некоторых физических соображений или методом подбора. Для задачи определения состава входных переменных прогнозной нейросетевой модели временного ряда предлагается использовать особенности поведения автокорреляционной и частной автокорреляционной функций.
В работе предлагается метод определения состава входных переменных нейросетевых моделей для стационарных и нестационарных временных рядов, базирующийся на построении и анализе автокорреляционных функций. На основе предложенного метода разработаны алгоритм и программа в среде программирования Python, определяющая состав входных переменных прогнозной нейросетевой модели — персептрона, а также строящая саму модель. Осуществлена экспериментальная апробация предложенного метода на примере построения прогнозной нейросетевой модели временного ряда, отражающего потребление электроэнергии в разных регионах США, открыто опубликованной компанией PJM Interconnection LLC (PJM) — региональной сетевой организацией в Соединенных Штатах. Данный временной ряд является нестационарным и характеризуется наличием как тренда, так и сезонности. Прогнозирование очередных значений временного ряда на ос- нове предыдущих значений и построенной нейросетевой модели показало высокую точность аппроксимации, что доказывает эффективность предлагаемого метода.
Ключевые слова: временной ряд, прогнозирование, нейросетевая модель, персептрон, тренд, сезонность, стационарный ряд, нестационарный ряд, автокорреляционная функция, частная автокорреляционная функция, точность аппроксимации.
A method of constructing a predictive neural network model of a time series
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 737-756This article studies a method of constructing a predictive neural network model of a time series based on determining the composition of input variables, constructing a training sample and training itself using the back propagation method. Traditional methods of constructing predictive models of the time series are: the autoregressive model, the moving average model or the autoregressive model — the moving average allows us to approximate the time series by a linear dependence of the current value of the output variable on a number of its previous values. Such a limitation as linearity of dependence leads to significant errors in forecasting.
Mining Technologies using neural network modeling make it possible to approximate the time series by a nonlinear dependence. Moreover, the process of constructing of a neural network model (determining the composition of input variables, the number of layers and the number of neurons in the layers, choosing the activation functions of neurons, determining the optimal values of the neuron link weights) allows us to obtain a predictive model in the form of an analytical nonlinear dependence.
The determination of the composition of input variables of neural network models is one of the key points in the construction of neural network models in various application areas that affect its adequacy. The composition of the input variables is traditionally selected from some physical considerations or by the selection method. In this work it is proposed to use the behavior of the autocorrelation and private autocorrelation functions for the task of determining the composition of the input variables of the predictive neural network model of the time series.
In this work is proposed a method for determining the composition of input variables of neural network models for stationary and non-stationary time series, based on the construction and analysis of autocorrelation functions. Based on the proposed method in the Python programming environment are developed an algorithm and a program, determining the composition of the input variables of the predictive neural network model — the perceptron, as well as building the model itself. The proposed method was experimentally tested using the example of constructing a predictive neural network model of a time series that reflects energy consumption in different regions of the United States, openly published by PJM Interconnection LLC (PJM) — a regional network organization in the United States. This time series is non-stationary and is characterized by the presence of both a trend and seasonality. Prediction of the next values of the time series based on previous values and the constructed neural network model showed high approximation accuracy, which proves the effectiveness of the proposed method.
-
Идентификация управляемого объекта по частотным характеристикам, полученным экспериментально на нейросетевой динамической модели системы управления
Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 729-740Приведены результаты исследований по идентификации каналов управляемого объекта, основанные на постобработке измерений с созданием модели многовходового управляемого объекта и последующем активном вычислительном эксперименте. Построение модели управляемого объекта осуществляется путем аппроксимации его поведения нейросетевой моделью по трендам, полученным в ходе пассивного эксперимента в режиме нормальной эксплуатации. Рекуррентная нейронная сеть, имеющая в своем составе элементы в виде обратных связей, позволяет моделировать поведение динамических объектов. Временны́е задержки входных сигналов и сигналов обратных связей позволяют моделировать поведение инерционных объектов с чистым запаздыванием. Обученная на примерах функционирования объекта с системой управления модель представлена динамической нейронной сетью и моделью регулятора с известной функцией регулирования. Нейросетевая модель эмулирует поведение системы и используется для проведения на ней опытов активного вычислительного эксперимента. Нейросетевая модель позволяет получить отклик управляемого объекта на испытательное воздействие, в том числе и на периодическое. По полученной комплексной частотной характеристике с применением метода наименьших квадратов находят значения параметров передаточной функции каналов объекта. Представлен пример идентификации канала имитационной системы управления. Имитационный объект имеет два входа и один выход и обладает различным транспортным запаздыванием по каналам передачи. Один из входов является управляющим воздействием, второй является контролируемым возмущением. Выходная управляемая величина изменяется в результате управляющего воздействия, вырабатываемого регулятором, работающим по пропорционально-интегральному закону регулирования, на основании отклонения управляемой величины от задания. Найденные параметры передаточных функций каналов имитационного объекта близки к значениям параметров исходного имитационного объекта. Приведенная ошибка реакции на единичное ступенчатое воздействие модели системы управления, построенной по результатам идентификации имитационной системы управления, не превышает 0.08. Рассматриваемые объекты относятся к классу технологических процессов с непрерывным характером производства. Подобные объекты характерны для химической, металлургической, горно-обогатительной, целлюлозно-бумажной и ряда других отраслей промышленности.
Ключевые слова: объект с системой управления, идентификация, нейронная сеть, моделирование, комплексная частотная характеристика, передаточная функция.
Identification of a controlled object using frequency responses obtained from a dynamic neural network model of a control system
Computer Research and Modeling, 2017, v. 9, no. 5, pp. 729-740Просмотров за год: 10.We present results of a study aimed at identification of a controlled object’s channels based on postprocessing of measurements with development of a model of a multiple-input controlled object and subsequent active modelling experiment. The controlled object model is developed using approximation of its behavior by a neural network model using trends obtained during a passive experiment in the mode of normal operation. Recurrent neural network containing feedback elements allows to simulate behavior of dynamic objects; input and feedback time delays allow to simulate behavior of inertial objects with pure delay. The model was taught using examples of the object’s operation with a control system and is presented by a dynamic neural network and a model of a regulator with a known regulation function. The neural network model simulates the system’s behavior and is used to conduct active computing experiments. Neural network model allows to obtain the controlled object’s response to an exploratory stimulus, including a periodic one. The obtained complex frequency response is used to evaluate parameters of the object’s transfer system using the least squares method. We present an example of identification of a channel of the simulated control system. The simulated object has two input ports and one output port and varying transport delays in transfer channels. One of the input ports serves as a controlling stimulus, the second is a controlled perturbation. The controlled output value changes as a result of control stimulus produced by the regulator operating according to the proportional-integral regulation law based on deviation of the controlled value from the task. The obtained parameters of the object’s channels’ transfer functions are close to the parameters of the input simulated object. The obtained normalized error of the reaction for a single step-wise stimulus of the control system model developed based on identification of the simulated control system doesn’t exceed 0.08. The considered objects pertain to the class of technological processes with continuous production. Such objects are characteristic of chemical, metallurgic, mine-mill, pulp and paper, and other industries.
-
Применение искусственных нейронных сетей для подбора состава смесевого хладагента с заданной кривой кипения
Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 593-608В работе представлен метод подбора состава смесевого хладагента (СХА) с заданной изобарной кривой кипения с помощью искусственной нейронной сети (ИНС). Данный метод основан на использовании 1D-слоев сверточной нейронной сети. Для обучения нейронной сети была применена термодинамическая модель простого теплообменника в программе UniSim design с использованием уравнения состояния Пенга–Робинсона. С помощью термодинамической модели была создана синтетическая база данных по изобарным кривым кипения СХА разного состава. Для записи базы данных был разработан алгоритм на языке программирования Python, и с помощью COM интерфейса была выгружена информация по изобарным кривым кипения для 1 049 500 вариантов состава СХА. Генерация составов СХА была проведена с помощью метода Монте-Карло с равномерным распределением псевдослучайного числа. Авторами разработана архитектура искусственной нейронной сети, которая позволяет подбирать состав СХА. Для обучения ИНС была применена методика циклически изменяемого коэффициента обучения. В результате применения обученной ИНС был подобран состав СХА с минимальным температурным напором 3 К, а максимальным — не более 10 К между горячим и холодным потоками в теплообменнике. Было проведено сравнение предложенного метода с методом поиска наилучшего совпадения в исходной выборке по методу $k$-ближних соседей, а также со стандартным методом оптимизации SQP в программе UniSim design. Показано, что искусственная нейронная сеть может быть использована для подбора оптимального состава хладагента при анализе кривой охлаждения природного газа. Разработанный метод может помочь инженерам подбирать состав СХА в режиме реального времени, что позволит сократить энергетические затраты на сжижение природного газа.
Ключевые слова: сжиженный природный газ, СПГ, оптимизация производства СПГ, смесевой хладагент, СХА, нейронные сети, искусственный интеллект.
Applying artificial neural network for the selection of mixed refrigerant by boiling curve
Computer Research and Modeling, 2022, v. 14, no. 3, pp. 593-608The paper provides a method for selecting the composition of a refrigerant with a given isobaric cooling curve using an artificial neural network (ANN). This method is based on the use of 1D layers of a convolutional neural network. To train the neural network, we applied a technological model of a simple heat exchanger in the UniSim design program, using the Peng – Robinson equation of state.We created synthetic database on isobaric boiling curves of refrigerants of different compositions using the technological model. To record the database, an algorithm was developed in the Python programming language, and information on isobaric boiling curves for 1 049 500 compositions was uploaded using the COM interface. The compositions have generated by Monte Carlo method. Designed architecture of ANN allows select composition of a mixed refrigerant by 101 points of boiling curve. ANN gives mole flows of mixed refrigerant by composition (methane, ethane, propane, nitrogen) on the output layer. For training ANN, we used method of cyclical learning rate. For results demonstration we selected MR composition by natural gas cooling curve with a minimum temperature drop of 3 К and a maximum temperature drop of no more than 10 К, which turn better than we predicted via UniSim SQP optimizer and better than predicted by $k$-nearest neighbors algorithm. A significant value of this article is the fact that an artificial neural network can be used to select the optimal composition of the refrigerant when analyzing the cooling curve of natural gas. This method can help engineers select the composition of the mixed refrigerant in real time, which will help reduce the energy consumption of natural gas liquefaction.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"