Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'seasonality':
Найдено статей: 9
  1. Емалетдинова Л.Ю., Мухаметзянов З.И., Катасёва Д.В., Кабирова А.Н.
    Метод построения прогнозной нейросетевой модели временного ряда
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 737-756

    В данной статье рассматривается метод построения прогнозной нейросетевой модели временного ряда, основанный на определении состава входных переменных, построения обучающей выборки и самого обучения с использованием метода обратного распространения ошибки. Традиционные методы построения прогнозных моделей временного ряда (авторегрессионной модели, модели скользящего среднего или модели авторегрессии – скользящего среднего) позволяют аппроксимировать временной ряд линейной зависимостью текущего значения выходной переменной от некоторого количества ее предыдущих значений. Такое ограничение, как линейность зависимости, приводит к значительным ошибкам при прогнозировании.

    Технологии интеллектуального анализа с применением нейросетевого моделирования позволяют аппроксимировать временной ряд нелинейной зависимостью. Причем процесс построения нейросетевой модели (определение состава входных переменных, числа слоев и количества нейронов в слоях, выбор функций активации нейронов, определение оптимальных значений весов связей нейронов) позволяет получить прогнозную модель в виде аналитической нелинейной зависимости.

    Одним из ключевых моментов при построении нейросетевых моделей в различных прикладных областях, влияющих на ее адекватность, является определение состава ее входных переменных. Состав входных переменных традиционно выбирается из некоторых физических соображений или методом подбора. Для задачи определения состава входных переменных прогнозной нейросетевой модели временного ряда предлагается использовать особенности поведения автокорреляционной и частной автокорреляционной функций.

    В работе предлагается метод определения состава входных переменных нейросетевых моделей для стационарных и нестационарных временных рядов, базирующийся на построении и анализе автокорреляционных функций. На основе предложенного метода разработаны алгоритм и программа в среде программирования Python, определяющая состав входных переменных прогнозной нейросетевой модели — персептрона, а также строящая саму модель. Осуществлена экспериментальная апробация предложенного метода на примере построения прогнозной нейросетевой модели временного ряда, отражающего потребление электроэнергии в разных регионах США, открыто опубликованной компанией PJM Interconnection LLC (PJM) — региональной сетевой организацией в Соединенных Штатах. Данный временной ряд является нестационарным и характеризуется наличием как тренда, так и сезонности. Прогнозирование очередных значений временного ряда на ос- нове предыдущих значений и построенной нейросетевой модели показало высокую точность аппроксимации, что доказывает эффективность предлагаемого метода.

    Emaletdinova L.Y., Mukhametzyanov Z.I., Kataseva D.V., Kabirova A.N.
    A method of constructing a predictive neural network model of a time series
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 737-756

    This article studies a method of constructing a predictive neural network model of a time series based on determining the composition of input variables, constructing a training sample and training itself using the back propagation method. Traditional methods of constructing predictive models of the time series are: the autoregressive model, the moving average model or the autoregressive model — the moving average allows us to approximate the time series by a linear dependence of the current value of the output variable on a number of its previous values. Such a limitation as linearity of dependence leads to significant errors in forecasting.

    Mining Technologies using neural network modeling make it possible to approximate the time series by a nonlinear dependence. Moreover, the process of constructing of a neural network model (determining the composition of input variables, the number of layers and the number of neurons in the layers, choosing the activation functions of neurons, determining the optimal values of the neuron link weights) allows us to obtain a predictive model in the form of an analytical nonlinear dependence.

    The determination of the composition of input variables of neural network models is one of the key points in the construction of neural network models in various application areas that affect its adequacy. The composition of the input variables is traditionally selected from some physical considerations or by the selection method. In this work it is proposed to use the behavior of the autocorrelation and private autocorrelation functions for the task of determining the composition of the input variables of the predictive neural network model of the time series.

    In this work is proposed a method for determining the composition of input variables of neural network models for stationary and non-stationary time series, based on the construction and analysis of autocorrelation functions. Based on the proposed method in the Python programming environment are developed an algorithm and a program, determining the composition of the input variables of the predictive neural network model — the perceptron, as well as building the model itself. The proposed method was experimentally tested using the example of constructing a predictive neural network model of a time series that reflects energy consumption in different regions of the United States, openly published by PJM Interconnection LLC (PJM) — a regional network organization in the United States. This time series is non-stationary and is characterized by the presence of both a trend and seasonality. Prediction of the next values of the time series based on previous values and the constructed neural network model showed high approximation accuracy, which proves the effectiveness of the proposed method.

  2. Абакумов А.И., Израильский Ю.Г.
    Модели распределения фитопланктона по хлорофиллу в разных условиях среды обитания. Оценка биопродуктивности водной экосистемы
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1177-1190

    Предложена модель динамики обилия фитопланктона в зависимости от изменения содержания хлорофилла в фитопланктоне под воздействием меняющихся условий среды обитания. Модель учитывает зависимость роста биомассы от условий среды, а также от фотосинтетической активности хлорофилла. Выделены световая и темновая стадии фотосинтеза. Описываются процессы расходования хлорофилла при фотосинтезе на свету и нарастания массы хлорофилла вместе с биомассой фитопланктона. Учитываются условия среды в виде минеральных питательных веществ, освещенности и температуры воды. Модель является распределенной, пространственная переменная соответствует массовой доле хлорофилла в фитопланктоне. Тем самым учтены возможные разбросы доли хлорофилла в фитопланктоне. В модели рассчитывается плотность распределения фитопланктона по доле хлорофилла в нем. Кроме того, вычисляется скорость продуцирования новой биомассы фитопланктона. Параллельно рассмотрены точечные аналоги распределенной модели. В моделях исследованы свойства решений. Продемонстрирована суточная и сезонная, в течение года, динамика распределения фитопланктона по доле хлорофилла. Указаны характеристики скорости первичного продуцирования в суточно или сезонно меняющихся условиях среды. Модельные характеристики динамики роста биомассы фитопланктона показывают, что на свету этот рост примерно в два раза больше, чем в темноте. Это показывает, что освещенность существенно влияет на скорость продуцирования. Сезонная динамика демонстрирует ускоренный рост биомассы весной и осенью. Весенний максимум связан с потеплением в условиях накопленных зимой биогенных веществ, а осенний (несколько меньший) максимум — с накоплением биогенов при летнем спаде биомассы фитопланктона. А биомасса летом уменьшается опять-таки из-за дефицита биогенов. Таким образом, в присутствии света основную роль в динамике фитопланктона играет минеральное питание.

    В целом модель демонстрирует качественно похожую на классические представления динамику биомассы фитопланктона при суточных и сезонных изменениях окружающей среды. Модель представляется пригодной для оценок биопродуктивности водных экосистем. Она может быть дополнена уравнениями и членами уравнений для более подробного описания сложных процессов фотосинтеза. Введение переменных физического пространства обитания и сопряжение модели со спутниковой информацией о поверхности водоема ведут к модельным оценкам биопродуктивности обширных морских районов.

    Abakumov A.I., Izrailsky Y.G.
    Models of phytoplankton distribution over chlorophyll in various habitat conditions. Estimation of aquatic ecosystem bioproductivity
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1177-1190

    A model of the phytoplankton abundance dynamics depending on changes in the content of chlorophyll in phytoplankton under the influence of changing environmental conditions is proposed. The model takes into account the dependence of biomass growth on environmental conditions, as well as on photosynthetic chlorophyll activity. The light and dark stages of photosynthesis have been identified. The processes of chlorophyll consumption during photosynthesis in the light and the growth of chlorophyll mass together with phytoplankton biomass are described. The model takes into account environmental conditions such as mineral nutrients, illumination and water temperature. The model is spatially distributed, the spatial variable corresponds to mass fraction of chlorophyll in phytoplankton. Thereby possible spreads of the chlorophyll contents in phytoplankton are taken into consideration. The model calculates the density distribution of phytoplankton by the proportion of chlorophyll in it. In addition, the rate of production of new phytoplankton biomass is calculated. In parallel, point analogs of the distributed model are considered. The diurnal and seasonal (during the year) dynamics of phytoplankton distribution by chlorophyll fraction are demonstrated. The characteristics of the rate of primary production in daily or seasonally changing environmental conditions are indicated. Model characteristics of the dynamics of phytoplankton biomass growth show that in the light this growth is about twice as large as in the dark. It shows, that illumination significantly affects the rate of production. Seasonal dynamics demonstrates an accelerated growth of biomass in spring and autumn. The spring maximum is associated with warming under the conditions of biogenic substances accumulated in winter, and the autumn, slightly smaller maximum, with the accumulation of nutrients during the summer decline in phytoplankton biomass. And the biomass in summer decreases, again due to a deficiency of nutrients. Thus, in the presence of light, mineral nutrition plays the main role in phytoplankton dynamics.

    In general, the model demonstrates the dynamics of phytoplankton biomass, qualitatively similar to classical concepts, under daily and seasonal changes in the environment. The model seems to be suitable for assessing the bioproductivity of aquatic ecosystems. It can be supplemented with equations and terms of equations for a more detailed description of complex processes of photosynthesis. The introduction of variables in the physical habitat space and the conjunction of the model with satellite information on the surface of the reservoir leads to model estimates of the bioproductivity of vast marine areas. Introduction of physical space variables habitat and the interface of the model with satellite information about the surface of the basin leads to model estimates of the bioproductivity of vast marine areas.

  3. Малыгина Н.В., Сурков П.Г.
    О моделировании преодоления водной преграды Rangifer tarandus L
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 895-910

    Видоспецифическими поведенческими признаками дикого северного оленя Rangifer tarandus L. традиционно признаны сезонные миграции и стадный инстинкт. В период миграций эти животные вынуждены преодолевать водные преграды. Особенности поведения рассматриваются как результат процесса селекции, когда среди множества стратегий выбрана единственно эволюционно-стабильная, определяющая репродукцию и биологическую выживаемость дикого северного оленя как вида. Ввиду эскалации промышленного освоения Арктики в настоящее время естественные процессы в популяциях диких северных оленей таймырской популяции происходят на фоне увеличения влияния негативных факторов, поэтому естественно возникла необходимость выявления этологических особенностей этих животных. В настоящей работе представлены результаты применения классических методов теории оптимального управления и дифференциальных игр к исследованию миграционных этограмм диких северных оленей при преодолении водных преград, в том числе крупных рек. На основе этологических особенностей этих животных и форм поведения стадо представляется в качестве управляемой динамической системы. Также оно делится на два класса особей: вожак и остальное стадо, для которых строятся свои модели, описывающие траектории их движения. В основу моделей закладываются гипотезы, представляющие собой математическую формализацию некоторых схем поведения животных. Данный подход позволил найти траекторию важенки с использованием методов теории оптимального управления, а при построении траекторий остальных особей — применить принцип управления с поводырем. Апробация полученных результатов, которые могут быть использованы в формировании общей «платформы» для систематического построения моделей адаптивного поведения и в качестве задела для фундаментальных разработок моделей когнитивной эволюции, проводится численно на модельном примере, использующем данные наблюдений на реке Верхняя Таймыра.

    Malygina N.V., Surkov P.G.
    On the modeling of water obstacles overcoming by Rangifer tarandus L
    Computer Research and Modeling, 2019, v. 11, no. 5, pp. 895-910

    Seasonal migrations and herd instinct are traditionally recognized as wild reindeer (Rangifer tarandus L.) species-specific behavioral signs. These animals are forced to overcome water obstacles during the migrations. Behaviour peculiarities are considered as the result of the selection process, which has chosen among the sets of strategies, as the only evolutionarily stable one, determining the reproduction and biological survival of wild reindeer as a species. Natural processes in the Taimyr population wild reindeer are currently occurring against the background of an increase in the influence of negative factors due to the escalation of the industrial development of the Arctic. That is why the need to identify the ethological features of these animals completely arose. This paper presents the results of applying the classical methods of the theory of optimal control and differential games to the wild reindeer study of the migration patterns in overcoming water barriers, including major rivers. Based on these animals’ ethological features and behavior forms, the herd is presented as a controlled dynamic system, which presents also two classes of individuals: the leader and the rest of the herd, for which their models, describing the trajectories of their movement, are constructed. The models are based on hypotheses, which are the mathematical formalization of some animal behavior patterns. This approach made it possible to find the trajectory of the important one using the methods of the optimal control theory, and in constructing the trajectories of other individuals, apply the principle of control with a guide. Approbation of the obtained results, which can be used in the formation of a common “platform” for the adaptive behavior models systematic construction and as a reserve for the cognitive evolution models fundamental development, is numerically carried out using a model example with observational data on the Werchnyaya Taimyra River.

  4. Белотелов Н.В., Апалькова Т.Г., Мамкин В.В., Курбатова Ю.А., Ольчев А.В.
    Некоторые особенности взаимосвязи термодинамических характеристик земной поверхности с потоками водяного пара и диоксида углерода на сплошной свежей вырубке
    Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 965-980

    В статье рассматриваются некоторые особенности временной изменчивости и взаимосвязь эксергии коротковолнового и длинноволнового излучения с потоками тепла, водяного пара (Н2О) и диоксида углерода (СО2) на сплошной свежей вырубке в смешанном хвойно-мелколиственном лесу в Тверской области. На основе проведенного сравнения коэффициентов радиационной эффективности и эффективности эксергии, введенных Ю. М. Свирежевым, было показано, что в течение первых восьми месяцев после проведения сплошной рубки лесная экосистема функционирует как «тепловая машина», то есть на вырубке доминируют процессы диссипации энергии над продукционными процессами. Для проверки справедливости полученного вывода был выполнен статистический анализ временной изменчивости метеорологических рядов наблюдений и данных по среднесуточным значениям потоков явного тепла, затрат тепла на испарение и потоков СО2 с применением тригонометрических многочленов, который подтвердил полученный ранее вывод. Для среднесуточных значений потоков СО2, валовой первичной продуктивности растительного покрова на вырубке, а также потоков явного тепла удалось построить статистические модели, линейно зависящие от эксергии коротковолнового и длинноволнового излучения. Анализ этих зависимостей также подтвердил вывод, полученный на основе рассмотрения временной изменчивости коэффициентов радиационной эффективности и эффективности эксергии. Используя разбиение временных рядов на отдельные временные интервалы «весна–лето» и «лето–осень», удалось выявить, что в процессе зарастания вырубки травянистой растительностью в летние месяцы связь между этими параметрами и величиной эксергии усиливается. Анализ линейной связи временных рядов затрат тепла на испарение и эксергии показал ее статистическую незначимость. В свою очередь, линейная связь между затратами тепла на испарение и температурой оказалась статистически значимой. Температура выступала в роли ключевого фактора, повышающего точность модели, а эксергия оказывалась несущественным фактором. Это указывает на то, что межсуточная временная изменчивость испарения активно зарастающей вырубки определялась главным образом температурой.

    Belotelov N.V., Apal’kova T.G., Mamkin V.V., Kurbatova Y.A., Olchev A.V.
    Some relationships between thermodynamic characteristics and water vapor and carbon dioxide fluxes in a recently clear-cut area
    Computer Research and Modeling, 2017, v. 9, no. 6, pp. 965-980

    The temporal variability of exergy of short-wave and long-wave radiation and its relationships with sensible heat, water vapor (H2O) and carbon dioxide (CO2) fluxes on a recently clear-cut area in a mixed coniferous and small-leaved forest in the Tver region is discussed. On the basis of the analysis of radiation and exergy efficiency coefficients suggested by Yu.M. Svirezhev it was shown that during the first eight months after clearcutting the forest ecosystem functions as a "heat engine" i.e. the processes of energy dissipation dominated over processes of biomass production. To validate the findings the statistical analysis of temporary variability of meteorological parameters, as well as, daily fluxes of sensible heat, H2O and CO2 was provided using the trigonometrical polynomials. The statistical models that are linearly depended on an exergy of short-wave and long-wave radiation were obtained for mean daily values of CO2 fluxes, gross primary production of regenerated vegetation and sensible heat fluxes. The analysis of these dependences is also confirmed the results obtained from processing the radiation and exergy efficiency coefficients. The splitting the time series into separate time intervals, e.g. “spring–summer” and “summer–autumn”, allowed revealing that the statistically significant relationships between atmospheric fluxes and exergy were amplified in summer months as the clear-cut area was overgrown by grassy and young woody vegetation. The analysis of linear relationships between time-series of latent heat fluxes and exergy showed their statistical insignificance. The linear relationships between latent heat fluxes and temperature were in turn statistically significant. The air temperature was a key factor improving the accuracy of the models, whereas effect of exergy was insignificant. The results indicated that at the time of active vegetation regeneration within the clear-cut area the seasonal variability of surface evaporation is mainly governed by temperature variation.

    Просмотров за год: 15. Цитирований: 1 (РИНЦ).
  5. Кирилюк И.Л., Волынский А.И., Круглова М.С., Кузнецова А.В., Рубинштейн А.А., Сенько О.В.
    Эмпирическая проверка теории институциональных матриц методами интеллектуального анализа данных
    Компьютерные исследования и моделирование, 2015, т. 7, № 4, с. 923-939

    Цель настоящего исследования состояла в установлении достоверной взаимосвязи показателей внешней среды и уровня освоенности территорий с характером доминирующих в странах институциональных матриц. Среди индикаторов внешних условий представлены как исходные статистические показатели, напрямую полученные из баз данных открытого доступа, так и сложные интегральные показатели, сформированные путем применения метода главных компонент. Оценка точности распознавания стран с доминированием X- или Y-институциональных матриц по перечисленным показателям проводилась с помощью ряда методов, основанных на машинном обучении. Была выявлена высокая информативность таких показателей, как освоенность территории, амплитуда осадков, летние и зимние температуры, уровень рисков.

    Kirilyuk I.L., Volynsky A.I., Kruglova M.S., Kuznetsova A.V., Rubinstein A.A., Sen'ko O.V.
    Empirical testing of institutional matrices theory by data mining
    Computer Research and Modeling, 2015, v. 7, no. 4, pp. 923-939

    The paper has a goal to identify a set of parameters of the environment and infrastructure with the most significant impact on institutional-matrices that dominate in different countries. Parameters of environmental conditions includes raw statistical indices, which were directly derived from the databases of open access, as well as complex integral indicators that were by method of principal components. Efficiency of discussed parameters in task of dominant institutional matrices type recognition (X or Y type) was evaluated by a number of methods based on machine learning. It was revealed that greatest informational content is associated with parameters characterizing risk of natural disasters, level of urbanization and the development of transport infrastructure, the monthly averages and seasonal variations of temperature and precipitation.

    Просмотров за год: 7. Цитирований: 13 (РИНЦ).
  6. Пархоменко В.П.
    Анализ оптимальной по Парето эффективности предотвращения глобального потепления методами геоинженерии
    Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 1097-1108

    Проведенное исследование основано на сочетании трехмерной гидродинамической модели глобального климата, включая модель океана с реальными глубинами и конфигурацией континентов, модель эволюции морского льда и энерго-, влагобалансовую модель атмосферы. Концентрация аэрозоля от 2010 г. до 2100 г. рассчитывается как управляющий параметр для стабилизации среднегодовой температуры воздуха у поверхности земли. На основе расчетов предполагается, что выбросы серы от 2010 г. до 2100 г. изменяются линейно для первого сценария и квадратично — для второго роста СО2. Граница Парето исследована и визуализирована для двух параметров — среднеквадратичного отклонения атмосферной температуры для зимнего и летнего сезонов.

    Parkhomenko P.V.
    Pareto optimal analysis of global warming prevention by geoengineering methods
    Computer Research and Modeling, 2015, v. 7, no. 5, pp. 1097-1108

    The study is based on a three-dimensional hydrodynamic global climate coupled model, including ocean model with real depths and continents configuration, sea ice evolution model and energy and moisture balance atmosphere model. Aerosol concentration from the year 2010 to 2100 is calculated as a controlling parameter to stabilize mean year surface air temperature. It is shown that by this way it is impossible to achieve the space and seasonal uniform approximation to the existing climate, although it is possible significantly reduce the greenhouse warming effect. Climate will be colder at 0.1–0.2 degrees in the low and mid-latitudes and at high latitudes it will be warmer at 0.2–1.2 degrees. The Pareto frontier is investigated and visualized for two parameters — atmospheric temperature mean square deviation for the winter and summer seasons. The Pareto optimal amount of sulfur emissions would be between 23.5 and 26.5 TgS/year.

    Просмотров за год: 1. Цитирований: 3 (РИНЦ).
  7. Молчанов А.Г., Ольчев А.В.
    Модель газообмена СО2 сфагнового верхового болота
    Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 369-377

    На основе анализа данных измерений потоков СО2 на двух примыкающих участках неосушенного сфагнового верхового болота (сосняке кустарничково-сфагновом и кустарничково-сфагновом болоте с редкой сосной) в Московской области построена модель, описывающая зависимость газообмена СО2 верхового болота от приходящей суммарной солнечной радиации, влажности почвы и температуры воздуха. Исследования проводились во второй половине вегетационного периода при уровне болотных вод ниже 30 см. На основе данных измерений выявлена ведущая роль влажности почвы как фактора, определяющего интенсивность фотосинтеза и дыхания сфагнума и почвы. Построенная модель позволяет объяснить от 71 % до 74 % изменчивости газообмена СО2 исследуемого болота.

     

    Molchanov A.G., Olchev A.V.
    Model of CO2 exchange in a sphagnum peat bog
    Computer Research and Modeling, 2016, v. 8, no. 2, pp. 369-377

    A simple model was developed to describe the dependence of net CO2 exchange in a sphagnum peat bog as a function of incoming solar radiation, air temperature, and soil moisture. It was parameterized using the field measurement data from two neighboring sites in an undisturbed peat bog (the pine mire with shrub and sphagnum and the shrub-sphagnum mire with rare pine) in Moscow Region. Measurements were conducted during the second part of the growing season, when the groundwater level was below 30 cm. It was shown that is a key parameter influencing the photosynthesis and respiration rates of a sphagnum moss and peat soil. The developed model allows to explain from 71 % to 74 % of the variation of CO2 exchange in the peat bog.

    Просмотров за год: 1. Цитирований: 3 (РИНЦ).
  8. Неверова Г.П., Фрисман Е.Я.
    Режимы динамики популяции с неперекрывающимися поколениями с учетом генетической и стадийной структур
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1165-1190

    В данной работе рассматривается простейшая модель динамики популяции с неперекрывающимися поколениями, в которой плотностно-зависимые факторы лимитируют интенсивность рождаемости. При этом репродуктивный потенциал определяется генетически, а процессы размножения приурочены к определенному годовому сезону. Исследуемая в работе эколого-генетическая модель представляет собой объединение экологической модели динамики лимитированной популяции с неперекрывающимися поколениями и микроэволюционной модели динамики ее генетической структуры для случая, когда адаптивное разнообразие репродуктивных возможностей в популяции определяется одним аутосомным диаллельным локусом с аллеломорфами $А$ и $а$. В ходе исследования данной модели показано, что генетический состав популяции (а именно, будет ли она полиморфной или мономорфной) определяется значениями репродуктивных потенциалов гетерозиготы и гомозигот. При этом режимы динамики численности популяции определяются величиной среднего репродуктивного потенциала зрелых особей и интенсивностью процессов саморегуляции. В частности, показано, что эволюционный рост среднего значения репродуктивного потенциала при плотностной регуляции рождаемости приводит к дестабилизации динамики численности возрастных групп. В то время как интенсивность процессов саморегуляции определяет характер возникающих колебаний, поскольку от количественной оценки именно этого фактора зависит сценарий потери устойчивости равновесных состояний. Показано, что закономерности возникновения и эволюции циклических режимов динамики в большой степени определяются особенностями жизненного цикла особей, составляющих популяцию. Именно жизненный цикл определяет наличие изолированных субпопуляций разных лет, что, в свою очередь, приводит к возможности независимой микроэволюции этих субпопуляций и возникновения сложных сценариев динамики как численности, так и генетической структуры. Закрепление разных адаптивных мутаций постепенно приведет к генетической (а возможно, и морфологической) дифференциации и к различиям в средних репродуктивных потенциалах субпопуляций и достижению ими разного равновесного уровня численности. Дальнейший эволюционный рост репродуктивных потенциалов экологически лимитированных субпопуляций приводит к колебаниям их численности, которые могут отличаться не только амплитудой, но и фазой. Обнаруженные в предложенной модели сценарии микроэволюции генетического состава популяции, связанные с колебаниями численности, вполне согласуются с результатами исследований популяции тихоокеанской горбуши, которая демонстрирует не только колебания численности, но и наличие генетически дифференцированных субпопуляций смежных поколений.

    Neverova G.P., Frisman E.Y.
    Dynamics regimes of population with non-overlapping generations taking into account genetic and stage structures
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1165-1190

    This paper studies a model of a population with non-overlapping generations and density-dependent regulation of birth rate. The population breeds seasonally, and its reproductive potential is determined genetically. The model proposed combines an ecological dynamic model of a limited population with non-overlapping generations and microevolutionary model of its genetic structure dynamics for the case when adaptive trait of birth rate controlled by a single diallelic autosomal locus with allelomorphs A and a. The study showed the genetic composition of the population, namely, will it be polymorphic or monomorphic, is mainly determined by the values of the reproductive potentials of heterozygote and homozygotes. Moreover, the average reproductive potential of mature individuals and intensity of self-regulation processes determine population dynamics. In particularly, increasing the average value of the reproductive potential leads to destabilization of the dynamics of age group sizes. The intensity of self-regulation processes determines the nature of emerging oscillations, since scenario of stability loss of fixed points depends on the values of this parameter. It is shown that patterns of occurrence and evolution of cyclic dynamics regimes are mainly determined by the features of life cycle of individuals in population. The life cycle leading to existence of non-overlapping generation gives isolated subpopulations in different years, which results in the possibility of independent microevolution of these subpopulations and, as a result, the complex dynamics emergence of both stage structure and genetic one. Fixing various adaptive mutations will gradually lead to genetic (and possibly morphological) differentiation and to differences in the average reproductive potentials of subpopulations that give different values of equilibrium subpopulation sizes. Further evolutionary growth of reproductive potentials of limited subpopulations leads to their number fluctuations which can differ in both amplitude and phase.

  9. Ильясов Д.В., Молчанов А.Г., Глаголев М.В., Суворов Г.Г., Сирин А.А.
    Моделирование нетто-экосистемного обмена диоксида углерода сенокоса на осушенной торфяной почве: анализ сценариев использования
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1427-1449

    Нетто-экосистемный обмен (NEE) — ключевой компонент углеродного баланса, характеризующий экосистему как источник или сток углерода. В работе интерпретируются данные натурных измерений NEE и составляющих его компонентов (дыхания почвы — Rsoil, экосистемы — Reco и валового газообмена — GEE) сенокоса и залежи методами математического моделирования. Измерения проводились в ходе пяти полевых кампаний 2018 и 2019 гг. на осушенной части Дубненского болотного массива в Талдомском районе Московской области. После осушения для добычи торфа остаточная торфяная залежь (1–1.5 м) была распахана и впоследствии залужена под сенокосы. Измерение потоков CO2 проводили с помощью динамических камер: при ненарушенной растительности измеряли NEE и Reco, а при ее удалении — Rsoil. Для моделирования потоков CO2 была использована их связь с температурой почвы и воздуха, уровнем почвенно-грунтовых вод, фотосинтетически активной радиацией, подземной и надземной фитомассой растений. Параметризация моделей проведена с учетом устойчивости коэффициентов, оцененной методом статистического моделирования (бутстрэпа). Проведены численные эксперименты по оценке влияния различных режимов использования сенокоса на NEE. Установлено, что общий за сезон (с 15 мая по 30 сентября) NEE значимо не отличался на сенокосе без кошения (К0) и залежи, составив соответственно 4.5±1.0 и 6.2±1.4 тС·га–1·сезон–1. Таким образом, оба объекта являются источником диоксида углерода в атмосферу. Однократное в сезон кошение сенокоса (К1) приводит к росту NEE до 6.5±0.9, а двукратное (К2) — до 7.5±1.4 тС·га–1·сезон–1. Как при К1, так и при К2 потери углерода незначительно увели- чиваются в сравнении с К0 и оказываются близкими в сравнении с залежью. При этом накопленный растениями углерод частично переводится при кошении в сельскохозяйственную продукцию (величина скошенной фитомассы для К1 и К2 составляет 0.8±0.1 и 1.4±0.1 тС·га–1·сезон–1), в то время как на залежи его значительная часть возвращается в атмосферу при отмирании и последующем разложении растений.

    Ilyasov D.V., Molchanov A.G., Glagolev M.V., Suvorov G.G., Sirin A.A.
    Modelling of carbon dioxide net ecosystem exchange of hayfield on drained peat soil: land use scenario analysis
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1427-1449

    The data of episodic field measurements of carbon dioxide balance components (soil respiration — Rsoil, ecosystem respiration — Reco, net ecosystem exchange — NEE) of hayfields under use and abandoned one are interpreted by modelling. The field measurements were carried within five field campaigns in 2018 and 2019 on the drained part of the Dubna Peatland in Taldom District, Moscow Oblast, Russia. The territory is within humid continental climate zone. Peatland drainage was done out for milled peat extraction. After extraction was stopped, the residual peat deposit (1–1.5 m) was ploughed and grassed (Poa pratensis L.) for hay production. The current ground water level (GWL) varies from 0.3–0.5 m below the surface during wet and up to 1.0 m during dry periods. Daily dynamics of CO2 fluxes was measured using dynamic chamber method in 2018 (August) and 2019 (May, June, August) for abandoned ditch spacing only with sanitary mowing once in 5 years and the ditch spacing with annual mowing. NEE and Reco were measured on the sites with original vegetation, and Rsoil — after vegetation removal. To model a seasonal dynamics of NEE, the dependence of its components (Reco, Rsoil, and Gross ecosystematmosphere exchange of carbon dioxide — GEE) from soil and air temperature, GWL, photosynthetically active radiation, underground and aboveground plant biomass were used. The parametrization of the models has been carried out considering the stability of coefficients estimated by the bootstrap method. R2 (α = 0.05) between simulated and measured Reco was 0.44 (p < 0.0003) on abandoned and 0.59 (p < 0.04) on under use hayfield, and GEE was 0.57 (p < 0.0002) and 0.77 (p < 0.00001), respectively. Numerical experiments were carried out to assess the influence of different haymaking regime on NEE. It was found that NEE for the season (May 15 – September 30) did not differ much between the hayfield without mowing (4.5±1.0 tC·ha–1·season–1) and the abandoned one (6.2±1.4). Single mowing during the season leads to increase of NEE up to 6.5±0.9, and double mowing — up to 7.5±1.4 tC·ha–1·season–1. This means increase of carbon losses and CO2 emission into the atmosphere. Carbon loss on hayfield for both single and double mowing scenario was comparable with abandoned hayfield. The value of removed phytomass for single and double mowing was 0.8±0.1 tC·ha–1·season–1 and 1.4±0.1 (45% carbon content in dry phytomass) or 3.0 and 4.4 t·ha–1·season–1 of hay (17% moisture content). In comparison with the fallow, the removal of biomass of 0.8±0.1 at single and 1.4±0.1 tC·ha–1·season–1 double mowing is accompanied by an increase in carbon loss due to CO2 emissions, i.e., the growth of NEE by 0.3±0.1 and 1.3±0.6 tC·ha–1·season–1, respectively. This corresponds to the growth of NEE for each ton of withdrawn phytomass per hectare of 0.4±0.2 tС·ha–1·season–1 at single mowing, and 0.9±0.7 tС·ha–1·season–1 at double mowing. Therefore, single mowing is more justified in terms of carbon loss than double mowing. Extensive mowing does not increase CO2 emissions into the atmosphere and allows, in addition, to “replace” part of the carbon loss by agricultural production.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.