Текущий выпуск Номер 5, 2020 Том 12
Результаты поиска по 'идентификация':
Найдено статей: 24
  1. От редакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 673-675
    Просмотров за год: 1.
  2. От редакции
    Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 5-7
    Просмотров за год: 27.
  3. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 5-8
  4. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 259-261
  5. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 471-473
  6. Анисимова Э.С.
    Идентификация онлайн-подписи с помощью оконного преобразования Фурье и радиального базиса
    Компьютерные исследования и моделирование, 2014, т. 6, № 3, с. 357-364

    В данной работе описан метод идентификации онлайн-подписи с использованием оконного преобразования Фурье и вейвлет-преобразования с радиальным базисом специального вида. При идентификации используются динамические характеристики подписи. Приведены оценки достоверности предложенной процедуры.

    Просмотров за год: 4. Цитирований: 3 (РИНЦ).
  7. Чернов И.А., Ивашко Е.Е., Никитина Н.Н., Габис И.Е.
    Численная идентификация модели дегидрирования в грид-системе на базе BOINC
    Компьютерные исследования и моделирование, 2013, т. 5, № 1, с. 37-45

    В работе рассматривается обратная задача определения по экспериментальным данным параметров модели выделения водорода из порошка гидрида металла. Методом слепого поиска в пространстве параметров установлено, что задача имеет многочисленные физически разумные решения. Решения задачи получены с помощью высокопроизводительного численного моделирования в грид–системе на базе платформы BOINC.

    Цитирований: 6 (РИНЦ).
  8. Дунюшкин Д.Ю.
    Метод формирования тестовых сигналов для корреляционной идентификации нелинейных систем
    Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 721-733

    Разработан и протестирован новый метод формирования тестовых сигналов для корреляционной идентификации нелинейных динамических систем методом Ли–Шетцена. Для коррекции моментных функций тестовых сигналов применен численный алгоритм оптимизации Гаусса–Ньютона. В экспериментах получены тестовые воздействия длиной до 40 000 точек, позволяющие определять ядра Винера 2-го порядка с линейным разрешением до 32 точек, ядра Винера 3-го порядка с линейным разрешением до 12 точек, ядра Винера 4-го порядка с линейным разрешением до 8 точек.

    Просмотров за год: 1. Цитирований: 3 (РИНЦ).
  9. Попов Д.И., Климчик А.С.
    Моделирование жесткости для шагающих роботов
    Компьютерные исследования и моделирование, 2019, т. 11, № 4, с. 631-651

    В работе рассматривается построение модели жесткости для антропоморфных платформ. Применяется эластостатическая модель жесткости для определения ошибок позиционирования для нижних конечностей робота. Одной из ключевых проблем в достижении быстрой и стабильной ходьбы двуногого робота являются отклонения, вызванные податливостью элементов робота. Эта проблема была решена с использованием метода виртуальных пружин для моделирования жесткости и нахождения деформаций, вызванных весом робота и силами, возникающими во время ходьбы в одноопорной и двухопорной фазах.

    Для моделирования робота в фазе одноопорной поддержки робот представлен как последовательная кинематическая цепочка с базой в месте контакта опорной ноги и рабочим органом в ступне свободной ноги. Для фазы двухопорной поддержки робот моделируется как параллельный манипулятор с базой в точках контакта ног с поверхностью и рабочим органом в тазу.

    В большинстве работ, связанных с моделированием жесткости, как правило, моделируется только податливость шарниров. В данной работе используются два метода построения модели: с учетом податливости звеньев и шарниров и с учетом податливости только шарниров. При этом производится идентификация значения жесткости каждого шарнира на полной модели, что позволяет учесть часть влияния податливости звена, пересчитанную на шарнир. Идентификация параметров жесткости шарниров произведена для двух антропоморфных роботов: малой платформы и полноразмерного AR-601M.

    Для идентифицированных параметров были построены карты отклонений, показывающие ошибку позиционирования в зависимости от положения ступни робота в рабочем пространстве. Максимальную амплитуду в данном случае имеет Z компонента вектора отклонений вследствие влияния массы робота на его конструкцию.

    Просмотров за год: 3.
  10. Приведены результаты исследований по идентификации каналов управляемого объекта, основанные на постобработке измерений с созданием модели многовходового управляемого объекта и последующем активном вычислительном эксперименте. Построение модели управляемого объекта осуществляется путем аппроксимации его поведения нейросетевой моделью по трендам, полученным в ходе пассивного эксперимента в режиме нормальной эксплуатации. Рекуррентная нейронная сеть, имеющая в своем составе элементы в виде обратных связей, позволяет моделировать поведение динамических объектов. Временны́е задержки входных сигналов и сигналов обратных связей позволяют моделировать поведение инерционных объектов с чистым запаздыванием. Обученная на примерах функционирования объекта с системой управления модель представлена динамической нейронной сетью и моделью регулятора с известной функцией регулирования. Нейросетевая модель эмулирует поведение системы и используется для проведения на ней опытов активного вычислительного эксперимента. Нейросетевая модель позволяет получить отклик управляемого объекта на испытательное воздействие, в том числе и на периодическое. По полученной комплексной частотной характеристике с применением метода наименьших квадратов находят значения параметров передаточной функции каналов объекта. Представлен пример идентификации канала имитационной системы управления. Имитационный объект имеет два входа и один выход и обладает различным транспортным запаздыванием по каналам передачи. Один из входов является управляющим воздействием, второй является контролируемым возмущением. Выходная управляемая величина изменяется в результате управляющего воздействия, вырабатываемого регулятором, работающим по пропорционально-интегральному закону регулирования, на основании отклонения управляемой величины от задания. Найденные параметры передаточных функций каналов имитационного объекта близки к значениям параметров исходного имитационного объекта. Приведенная ошибка реакции на единичное ступенчатое воздействие модели системы управления, построенной по результатам идентификации имитационной системы управления, не превышает 0.08. Рассматриваемые объекты относятся к классу технологических процессов с непрерывным характером производства. Подобные объекты характерны для химической, металлургической, горно-обогатительной, целлюлозно-бумажной и ряда других отраслей промышленности.

    Просмотров за год: 10.
Страницы: следующая последняя »

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал входит в Перечень российских рецензируемых научных журналов, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученых степеней доктора и кандидата наук ВАК, группы специальностей: 01.01.00, 01.02.00.
 

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал индексируется в Scopus