Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'сезонность':
Найдено статей: 9
  1. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 689-692
  2. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 939-942
  3. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1097-1100
  4. Емалетдинова Л.Ю., Мухаметзянов З.И., Катасёва Д.В., Кабирова А.Н.
    Метод построения прогнозной нейросетевой модели временного ряда
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 737-756

    В данной статье рассматривается метод построения прогнозной нейросетевой модели временного ряда, основанный на определении состава входных переменных, построения обучающей выборки и самого обучения с использованием метода обратного распространения ошибки. Традиционные методы построения прогнозных моделей временного ряда (авторегрессионной модели, модели скользящего среднего или модели авторегрессии – скользящего среднего) позволяют аппроксимировать временной ряд линейной зависимостью текущего значения выходной переменной от некоторого количества ее предыдущих значений. Такое ограничение, как линейность зависимости, приводит к значительным ошибкам при прогнозировании.

    Технологии интеллектуального анализа с применением нейросетевого моделирования позволяют аппроксимировать временной ряд нелинейной зависимостью. Причем процесс построения нейросетевой модели (определение состава входных переменных, числа слоев и количества нейронов в слоях, выбор функций активации нейронов, определение оптимальных значений весов связей нейронов) позволяет получить прогнозную модель в виде аналитической нелинейной зависимости.

    Одним из ключевых моментов при построении нейросетевых моделей в различных прикладных областях, влияющих на ее адекватность, является определение состава ее входных переменных. Состав входных переменных традиционно выбирается из некоторых физических соображений или методом подбора. Для задачи определения состава входных переменных прогнозной нейросетевой модели временного ряда предлагается использовать особенности поведения автокорреляционной и частной автокорреляционной функций.

    В работе предлагается метод определения состава входных переменных нейросетевых моделей для стационарных и нестационарных временных рядов, базирующийся на построении и анализе автокорреляционных функций. На основе предложенного метода разработаны алгоритм и программа в среде программирования Python, определяющая состав входных переменных прогнозной нейросетевой модели — персептрона, а также строящая саму модель. Осуществлена экспериментальная апробация предложенного метода на примере построения прогнозной нейросетевой модели временного ряда, отражающего потребление электроэнергии в разных регионах США, открыто опубликованной компанией PJM Interconnection LLC (PJM) — региональной сетевой организацией в Соединенных Штатах. Данный временной ряд является нестационарным и характеризуется наличием как тренда, так и сезонности. Прогнозирование очередных значений временного ряда на ос- нове предыдущих значений и построенной нейросетевой модели показало высокую точность аппроксимации, что доказывает эффективность предлагаемого метода.

  5. Абакумов А.И., Израильский Ю.Г.
    Модели распределения фитопланктона по хлорофиллу в разных условиях среды обитания. Оценка биопродуктивности водной экосистемы
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1177-1190

    Предложена модель динамики обилия фитопланктона в зависимости от изменения содержания хлорофилла в фитопланктоне под воздействием меняющихся условий среды обитания. Модель учитывает зависимость роста биомассы от условий среды, а также от фотосинтетической активности хлорофилла. Выделены световая и темновая стадии фотосинтеза. Описываются процессы расходования хлорофилла при фотосинтезе на свету и нарастания массы хлорофилла вместе с биомассой фитопланктона. Учитываются условия среды в виде минеральных питательных веществ, освещенности и температуры воды. Модель является распределенной, пространственная переменная соответствует массовой доле хлорофилла в фитопланктоне. Тем самым учтены возможные разбросы доли хлорофилла в фитопланктоне. В модели рассчитывается плотность распределения фитопланктона по доле хлорофилла в нем. Кроме того, вычисляется скорость продуцирования новой биомассы фитопланктона. Параллельно рассмотрены точечные аналоги распределенной модели. В моделях исследованы свойства решений. Продемонстрирована суточная и сезонная, в течение года, динамика распределения фитопланктона по доле хлорофилла. Указаны характеристики скорости первичного продуцирования в суточно или сезонно меняющихся условиях среды. Модельные характеристики динамики роста биомассы фитопланктона показывают, что на свету этот рост примерно в два раза больше, чем в темноте. Это показывает, что освещенность существенно влияет на скорость продуцирования. Сезонная динамика демонстрирует ускоренный рост биомассы весной и осенью. Весенний максимум связан с потеплением в условиях накопленных зимой биогенных веществ, а осенний (несколько меньший) максимум — с накоплением биогенов при летнем спаде биомассы фитопланктона. А биомасса летом уменьшается опять-таки из-за дефицита биогенов. Таким образом, в присутствии света основную роль в динамике фитопланктона играет минеральное питание.

    В целом модель демонстрирует качественно похожую на классические представления динамику биомассы фитопланктона при суточных и сезонных изменениях окружающей среды. Модель представляется пригодной для оценок биопродуктивности водных экосистем. Она может быть дополнена уравнениями и членами уравнений для более подробного описания сложных процессов фотосинтеза. Введение переменных физического пространства обитания и сопряжение модели со спутниковой информацией о поверхности водоема ведут к модельным оценкам биопродуктивности обширных морских районов.

  6. Малыгина Н.В., Сурков П.Г.
    О моделировании преодоления водной преграды Rangifer tarandus L
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 895-910

    Видоспецифическими поведенческими признаками дикого северного оленя Rangifer tarandus L. традиционно признаны сезонные миграции и стадный инстинкт. В период миграций эти животные вынуждены преодолевать водные преграды. Особенности поведения рассматриваются как результат процесса селекции, когда среди множества стратегий выбрана единственно эволюционно-стабильная, определяющая репродукцию и биологическую выживаемость дикого северного оленя как вида. Ввиду эскалации промышленного освоения Арктики в настоящее время естественные процессы в популяциях диких северных оленей таймырской популяции происходят на фоне увеличения влияния негативных факторов, поэтому естественно возникла необходимость выявления этологических особенностей этих животных. В настоящей работе представлены результаты применения классических методов теории оптимального управления и дифференциальных игр к исследованию миграционных этограмм диких северных оленей при преодолении водных преград, в том числе крупных рек. На основе этологических особенностей этих животных и форм поведения стадо представляется в качестве управляемой динамической системы. Также оно делится на два класса особей: вожак и остальное стадо, для которых строятся свои модели, описывающие траектории их движения. В основу моделей закладываются гипотезы, представляющие собой математическую формализацию некоторых схем поведения животных. Данный подход позволил найти траекторию важенки с использованием методов теории оптимального управления, а при построении траекторий остальных особей — применить принцип управления с поводырем. Апробация полученных результатов, которые могут быть использованы в формировании общей «платформы» для систематического построения моделей адаптивного поведения и в качестве задела для фундаментальных разработок моделей когнитивной эволюции, проводится численно на модельном примере, использующем данные наблюдений на реке Верхняя Таймыра.

  7. Пархоменко В.П.
    Анализ оптимальной по Парето эффективности предотвращения глобального потепления методами геоинженерии
    Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 1097-1108

    Проведенное исследование основано на сочетании трехмерной гидродинамической модели глобального климата, включая модель океана с реальными глубинами и конфигурацией континентов, модель эволюции морского льда и энерго-, влагобалансовую модель атмосферы. Концентрация аэрозоля от 2010 г. до 2100 г. рассчитывается как управляющий параметр для стабилизации среднегодовой температуры воздуха у поверхности земли. На основе расчетов предполагается, что выбросы серы от 2010 г. до 2100 г. изменяются линейно для первого сценария и квадратично — для второго роста СО2. Граница Парето исследована и визуализирована для двух параметров — среднеквадратичного отклонения атмосферной температуры для зимнего и летнего сезонов.

    Просмотров за год: 1. Цитирований: 3 (РИНЦ).
  8. Неверова Г.П., Фрисман Е.Я.
    Режимы динамики популяции с неперекрывающимися поколениями с учетом генетической и стадийной структур
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1165-1190

    В данной работе рассматривается простейшая модель динамики популяции с неперекрывающимися поколениями, в которой плотностно-зависимые факторы лимитируют интенсивность рождаемости. При этом репродуктивный потенциал определяется генетически, а процессы размножения приурочены к определенному годовому сезону. Исследуемая в работе эколого-генетическая модель представляет собой объединение экологической модели динамики лимитированной популяции с неперекрывающимися поколениями и микроэволюционной модели динамики ее генетической структуры для случая, когда адаптивное разнообразие репродуктивных возможностей в популяции определяется одним аутосомным диаллельным локусом с аллеломорфами $А$ и $а$. В ходе исследования данной модели показано, что генетический состав популяции (а именно, будет ли она полиморфной или мономорфной) определяется значениями репродуктивных потенциалов гетерозиготы и гомозигот. При этом режимы динамики численности популяции определяются величиной среднего репродуктивного потенциала зрелых особей и интенсивностью процессов саморегуляции. В частности, показано, что эволюционный рост среднего значения репродуктивного потенциала при плотностной регуляции рождаемости приводит к дестабилизации динамики численности возрастных групп. В то время как интенсивность процессов саморегуляции определяет характер возникающих колебаний, поскольку от количественной оценки именно этого фактора зависит сценарий потери устойчивости равновесных состояний. Показано, что закономерности возникновения и эволюции циклических режимов динамики в большой степени определяются особенностями жизненного цикла особей, составляющих популяцию. Именно жизненный цикл определяет наличие изолированных субпопуляций разных лет, что, в свою очередь, приводит к возможности независимой микроэволюции этих субпопуляций и возникновения сложных сценариев динамики как численности, так и генетической структуры. Закрепление разных адаптивных мутаций постепенно приведет к генетической (а возможно, и морфологической) дифференциации и к различиям в средних репродуктивных потенциалах субпопуляций и достижению ими разного равновесного уровня численности. Дальнейший эволюционный рост репродуктивных потенциалов экологически лимитированных субпопуляций приводит к колебаниям их численности, которые могут отличаться не только амплитудой, но и фазой. Обнаруженные в предложенной модели сценарии микроэволюции генетического состава популяции, связанные с колебаниями численности, вполне согласуются с результатами исследований популяции тихоокеанской горбуши, которая демонстрирует не только колебания численности, но и наличие генетически дифференцированных субпопуляций смежных поколений.

  9. Ильясов Д.В., Молчанов А.Г., Глаголев М.В., Суворов Г.Г., Сирин А.А.
    Моделирование нетто-экосистемного обмена диоксида углерода сенокоса на осушенной торфяной почве: анализ сценариев использования
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1427-1449

    Нетто-экосистемный обмен (NEE) — ключевой компонент углеродного баланса, характеризующий экосистему как источник или сток углерода. В работе интерпретируются данные натурных измерений NEE и составляющих его компонентов (дыхания почвы — Rsoil, экосистемы — Reco и валового газообмена — GEE) сенокоса и залежи методами математического моделирования. Измерения проводились в ходе пяти полевых кампаний 2018 и 2019 гг. на осушенной части Дубненского болотного массива в Талдомском районе Московской области. После осушения для добычи торфа остаточная торфяная залежь (1–1.5 м) была распахана и впоследствии залужена под сенокосы. Измерение потоков CO2 проводили с помощью динамических камер: при ненарушенной растительности измеряли NEE и Reco, а при ее удалении — Rsoil. Для моделирования потоков CO2 была использована их связь с температурой почвы и воздуха, уровнем почвенно-грунтовых вод, фотосинтетически активной радиацией, подземной и надземной фитомассой растений. Параметризация моделей проведена с учетом устойчивости коэффициентов, оцененной методом статистического моделирования (бутстрэпа). Проведены численные эксперименты по оценке влияния различных режимов использования сенокоса на NEE. Установлено, что общий за сезон (с 15 мая по 30 сентября) NEE значимо не отличался на сенокосе без кошения (К0) и залежи, составив соответственно 4.5±1.0 и 6.2±1.4 тС·га–1·сезон–1. Таким образом, оба объекта являются источником диоксида углерода в атмосферу. Однократное в сезон кошение сенокоса (К1) приводит к росту NEE до 6.5±0.9, а двукратное (К2) — до 7.5±1.4 тС·га–1·сезон–1. Как при К1, так и при К2 потери углерода незначительно увели- чиваются в сравнении с К0 и оказываются близкими в сравнении с залежью. При этом накопленный растениями углерод частично переводится при кошении в сельскохозяйственную продукцию (величина скошенной фитомассы для К1 и К2 составляет 0.8±0.1 и 1.4±0.1 тС·га–1·сезон–1), в то время как на залежи его значительная часть возвращается в атмосферу при отмирании и последующем разложении растений.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.