Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'minimization problem':
Найдено статей: 59
  1. Хохлов Н.И., Стецюк В.О., Мисковец И.А.
    Overset grids approach for topography modeling in elastic-wave modeling using the grid-characteristic method
    Компьютерные исследования и моделирование, 2019, т. 11, № 6, с. 1049-1059

    While modeling seismic wave propagation, it is important to take into account nontrivial topography, as this topography causes multiple complex phenomena, such as diffraction at rough surfaces, complex propagation of Rayleigh waves, and side effects caused by wave interference. The primary goal of this research is to construct a method that implements the free surface on topography, utilizing an overset curved grid for characterization, while keeping the main grid structured rectangular. For a combination of the regular and curve-linear grid, the workability of the grid characteristics method using overset grids (also known as the Chimera grid approach) is analyzed. One of the benefits of this approach is computational complexity reduction, caused by the fact that simulation in a regular, homogeneous physical area using a sparse regular rectangle grid is simpler. The simplification of the mesh building mechanism (one grid is regular, and the other can be automatically built using surface data) is a side effect. Despite its simplicity, the method we propose allows us to increase the digitalization of fractured regions and minimize the Courant number. This paper contains various comparisons of modeling results produced by the proposed method-based solver, and results produced by the well-known solver specfem2d, as well as previous modeling results for the same problems. The drawback of the method is that an interpolation error can worsen an overall model accuracy and reduce the computational schema order. Some countermeasures against it are described. For this paper, only two-dimensional models are analyzed. However, the method we propose can be applied to the three-dimensional problems with minimal adaptation required.

    Ключевые слова: overset grid, GCM, seismic wave, interpolation.
    Khokhlov N.I., Stetsyuk V.O., Mitskovets I.A.
    Overset grids approach for topography modeling in elastic-wave modeling using the grid-characteristic method
    Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1049-1059

    While modeling seismic wave propagation, it is important to take into account nontrivial topography, as this topography causes multiple complex phenomena, such as diffraction at rough surfaces, complex propagation of Rayleigh waves, and side effects caused by wave interference. The primary goal of this research is to construct a method that implements the free surface on topography, utilizing an overset curved grid for characterization, while keeping the main grid structured rectangular. For a combination of the regular and curve-linear grid, the workability of the grid characteristics method using overset grids (also known as the Chimera grid approach) is analyzed. One of the benefits of this approach is computational complexity reduction, caused by the fact that simulation in a regular, homogeneous physical area using a sparse regular rectangle grid is simpler. The simplification of the mesh building mechanism (one grid is regular, and the other can be automatically built using surface data) is a side effect. Despite its simplicity, the method we propose allows us to increase the digitalization of fractured regions and minimize the Courant number. This paper contains various comparisons of modeling results produced by the proposed method-based solver, and results produced by the well-known solver specfem2d, as well as previous modeling results for the same problems. The drawback of the method is that an interpolation error can worsen an overall model accuracy and reduce the computational schema order. Some countermeasures against it are described. For this paper, only two-dimensional models are analyzed. However, the method we propose can be applied to the three-dimensional problems with minimal adaptation required.

  2. Гладин Е.Л., Бородич Е.Д.
    Редукция дисперсии для минимаксных задач с небольшой размерностью одной из переменных
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 257-275

    Статья посвящена выпукло-вогнутым седловым задачам, в которых целевая функция является суммой большого числа слагаемых. Такие задачи привлекают значительное внимание математического сообщества в связи с множеством приложений в машинном обучении, включая adversarial learning, adversarial attacks и robust reinforcement learning, и это лишь некоторые из них. Отдельные функции в сумме обычно представляют собой ошибку, связанную с объектом из выборки. Кроме того, формулировка допускает (возможно, негладкий) композитный член. Такие слагаемые часто отражают регуляризацию в задачах машинного обучения. Предполагается, что размерность одной из групп переменных относительно мала (около сотни или меньше), а другой — велика. Такой случай возникает, например, при рассмотрении двойственной формулировки задачи минимизации с умеренным числом ограничений. Предлагаемый подход основан на использовании метода секущей плоскости Вайды для минимизации относительно внешнего блока переменных. Этот алгоритм оптимизации особенно эффективен, когда размерность задачи не очень велика. Неточный оракул для метода Вайды вычисляется через приближенное решение внутренней задачи максимизации, которая решается ускоренным алгоритмом с редукцией дисперсии Katyusha. Таким образом, мы используем структуру задачи для достижения быстрой сходимости. В исследовании получены отдельные оценки сложности для градиентов различных компонент относительно различных переменных. Предложенный подход накладывает слабые предположения о целевой функции. В частности, не требуется ни сильной выпуклости, ни гладкости относительно низкоразмерной группы переменных. Количество шагов предложенного алгоритма, а также арифметическая сложность каждого шага явно зависят от размерности внешней переменной, отсюда предположение, что она относительно мала.

    Gladin E.L., Borodich E.D.
    Variance reduction for minimax problems with a small dimension of one of the variables
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 257-275

    The paper is devoted to convex-concave saddle point problems where the objective is a sum of a large number of functions. Such problems attract considerable attention of the mathematical community due to the variety of applications in machine learning, including adversarial learning, adversarial attacks and robust reinforcement learning, to name a few. The individual functions in the sum usually represent losses related to examples from a data set. Additionally, the formulation admits a possibly nonsmooth composite term. Such terms often reflect regularization in machine learning problems. We assume that the dimension of one of the variable groups is relatively small (about a hundred or less), and the other one is large. This case arises, for example, when one considers the dual formulation for a minimization problem with a moderate number of constraints. The proposed approach is based on using Vaidya’s cutting plane method to minimize with respect to the outer block of variables. This optimization algorithm is especially effective when the dimension of the problem is not very large. An inexact oracle for Vaidya’s method is calculated via an approximate solution of the inner maximization problem, which is solved by the accelerated variance reduced algorithm Katyusha. Thus, we leverage the structure of the problem to achieve fast convergence. Separate complexity bounds for gradients of different components with respect to different variables are obtained in the study. The proposed approach is imposing very mild assumptions about the objective. In particular, neither strong convexity nor smoothness is required with respect to the low-dimensional variable group. The number of steps of the proposed algorithm as well as the arithmetic complexity of each step explicitly depend on the dimensionality of the outer variable, hence the assumption that it is relatively small.

  3. Борисова О.В., Борисов И.И., Нуждин К.А., Ледюков А.М., Колюбин С.А.
    Численное проектирование механизмов замкнутой кинематики: синтез эргономичного модуля экзоскелета для поддержки спины
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1269-1280

    Статья посвящена задаче со-дизайна исполнительных механизмов робототехнических систем, назначение которых заключается в контактном адаптивном взаимодействии с неструктурированным окружением, в том числе человеком. Со-дизайн заключается в одновременной оптимизации механики и системы управления механизмом, обеспечивающих оптимальное поведение и производительность системы. Под оптимизацией механики понимается поиск оптимальных структуры, геометрических параметров, распределения массы среди звеньев и их податливости; под управлением понимается поиск траекторий движения сочленений механизмов. В работе представлен обобщенный метод структурно-параметрического синтеза неполноприводных механизмов замкнутой кинематики, применимый для создания механизмов для робототехнических систем разного назначения; например, ранее он был апробирован для со-дизайна механизмов пальцев антропоморфных захватов и механизмов ног галопирующих роботов. Метод реализует концепцию морфологического расчета законов управления за счет особенностей механической конструкции, минимизируя управляющее воздействие со стороны алгоритмической составляющей системы управления, что позволяет снизить требования к уровню технического оснащения и понизить энергопотребление. В данной работе предложен- ный метод апробирован для оптимизации структуры и геометрических параметров пассивного механизма модуля поддержки спины промышленного экзокостюма. Движения человека разнообразны и недетерминированы, если сравнивать с движениями автономных роботов, что усложняет проектирование носимых робототехнических устройств. Для снижения травматизма, усталости и повышения производительности рабочих синтезируемый промышленный экзокостюм должен не только компенсировать нагрузки, но и не мешать естественным движениям человека. Для проверки разработанного экзокостюма были использованы кинематические данные захвата движения всего тела человека при выполнении промышленных операций. Предложенный метод структурно-параметрического синтеза был использован для повышения эргономичности носимого робототехнического устройства. Верификация синтезированного механизма произведена с помощью имитационного моделирования: пассивный модуль спины прикреплен к двум геометрическим примитивам, осуществляющим движение грудной клетки и таза оператора экзокостюма в соответствии с данными захвата движения. Эргономичность модуля спины количественно измерена расстоянием между сочленениями, соединяющими верхнюю и нижнюю части экзокостюма; минимизация отклонения от среднего значения соответствует меньшей степени ограниченности движения оператора,     т. е. большей эргономичности. В статье приведены подробное изложение метода структурно-параметрического синтеза, пример апробации метода для создания модуля экзокостюма и результаты имитационного моделирования.

    Borisova O.V., Borisov I.I., Nuzhdin K.A., Ledykov A.M., Kolyubin S.A.
    Computational design of closed-chain linkages: synthesis of ergonomic spine support module of exosuit
    Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1269-1280

    The article focuses on the problem of mechanisms’ co-design for robotic systems to perform adaptive physical interaction with an unstructured environment, including physical human robot interaction. The co-design means simultaneous optimization of mechanics and control system, ensuring optimal behavior and performance of the system. Mechanics optimization refers to the search for optimal structure, geometric parameters, mass distribution among the links and their compliance; control refers to the search for motion trajectories for mechanism’s joints. The paper presents a generalized method of structural-parametric synthesis of underactuated mechanisms with closed kinematics for robotic systems for various purposes, e. g., it was previously used for the co-design of fingers’ mechanisms for anthropomorphic gripper and legs’ mechanisms for galloping robots. The method implements the concept of morphological computation of control laws due to the features of mechanical design, minimizing the control effort from the algorithmic component of the control system, which reduces the requirements for the level of technical equipment and reduces energy consumption. In this paper, the proposed method is used to optimize the structure and geometric parameters of the passive mechanism of the back support module of an industrial exosuit. Human movements are diverse and non-deterministic when compared with the movements of autonomous robots, which complicates the design of wearable robotic devices. To reduce injuries, fatigue and increase the productivity of workers, the synthesized industrial exosuit should not only compensate for loads, but also not interfere with the natural human motions. To test the developed exosuit, kinematic datasets from motion capture of an entire human body during industrial operations were used. The proposed method of structural-parametric synthesis was used to improve the ergonomics of a wearable robotic device. Verification of the synthesized mechanism was carried out using simulation: the passive module of the back is attached to two geometric primitives that move the chest and pelvis of the exosuit operator in accordance with the motion capture data. The ergonomics of the back module is quantified by the distance between the joints connecting the upper and bottom parts of the exosuit; minimizing deviation from the average value corresponds to a lesser limitation of the operator’s movement, i. e. greater ergonomics. The article provides a detailed description of the method of structural-parametric synthesis, an example of synthesis of an exosuit module and the results of simulation.

  4. Гренкин Г.В.
    Об однозначности идентификации параметров скорости реакции в модели горения
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1469-1476

    Рассмотрена модель горения предварительно перемешанной смеси газов с одной глобальной химической реакцией, включающая в себя уравнения второго порядка относительно температуры смеси и концентраций топлива и окислителя, в правые части которых входит функция скорости реакции. Эта функция зависит от пяти неизвестных параметров глобальной реакции и служит приближением для многоступенчатого механизма реакций. Модель сводится к одному уравнению второго порядка относительно температуры смеси, которое после замены переменных преобразуется к уравнению первого порядка относительно производной температуры, зависящей от температуры, в которое входит параметр скорости распространения пламени. Таким образом, для вычисления параметра скорости распространения пламени необходимо решить задачу Дирихле для уравнения первого порядка, в результате чего получится модельная зависимость скорости распространения пламени от эквивалентного отношения смеси при заданных параметрах скорости реакции. При наличии экспериментальных данных зависимости скорости распространения пламени от эквивалентного отношения смеси ставится задача оптимального подбора параметров скорости реакции, исходя из минимизации среднеквадратичного отклонения модельных значений скорости распространения пламени от эксперимента. Целью работы является исследование однозначности решения этой задачи. Для этого применяется вычислительный эксперимент, в ходе которого решается задача глобального поиска оптимумов с помощью мультистарта градиентного спуска. В ходе вычислительного эксперимента выяснено, что обратная задача в такой постановке является недоопределенной, и всякий раз при запуске градиентного метода из новой точки получается новая предельная точка. Исследована структура множества предельных точек в пятимерном пространстве параметров и показано, что это множество может быть описано тремя линейными уравнениями. Таким образом, будет некорректным табулировать все пять параметров скорости реакции исходя из одного лишь критерия соответствия модели данным скорости распространения пламени. Вывод исследования заключается в том, что для корректного табулирования параметров необходимо указать значения двух из них исходя из дополнительных критериев оптимальности.

    Grenkin G.V.
    On the uniqueness of identification of reaction rate parameters in a combustion model
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1469-1476

    A model of combustion of premixed mixture of gases with one global chemical reaction is considered, the model includes equations of the second order for temperature of mixture and concentrations of fuel and oxidizer, and the right-hand sides of these equations contain the reaction rate function. This function depends on five unknown parameters of the global reaction and serves as approximation to multistep reaction mechanism. The model is reduced, after replacement of variables, to one equation of the second order for temperature of mixture that transforms to a first-order equation for temperature derivative depending on temperature that contains a parameter of flame propagation velocity. Thus, for computing the parameter of burning velocity, one has to solve Dirichlet problem for first-order equation, and after that a model dependence of burning velocity on mixture equivalence ratio at specified reaction rate parameters will be obtained. Given the experimental data of dependence of burning velocity on mixture equivalence ratio, the problem of optimal selection of reaction rate parameters is stated, based on minimization of the mean square deviation of model values of burning velocity on experimental ones. The aim of our study is analysis of uniqueness of this problem solution. To this end, we apply computational experiment during which the problem of global search of optima is solved using multistart of gradient descent. The computational experiment clarifies that the inverse problem in this statement is underdetermined, and every time, when running gradient descent from a selected starting point, it converges to a new limit point. The structure of the set of limit points in the five-dimensional space is analyzed, and it is shown that this set can be described with three linear equations. Therefore, it might be incorrect to tabulate all five parameters of reaction rate based on just one match criterion between model and experimental data of flame propagation velocity. The conclusion of our study is that in order to tabulate reaction rate parameters correctly, it is necessary to specify the values of two of them, based on additional optimality criteria.

  5. Работа посвящена проблеме создания модели со стационарными параметрами по ретроспективным данным в условиях неизвестных возмущений. Рассматривается случай, когда представительная выборка состояний объекта может быть сформирована с использованием ретроспективных данных, накопленных только в течение значительного интервала времени. При этом допускается, что неизвестные возмущения могут действовать в широком частотном диапазоне и могут иметь низкочастотные и трендовые составляющие. В такой ситуации включение в выборку данных разных временных периодов может привести к противоречиям и чрезвычайно снизить точность модели. В работе дан обзор подходов и способов согласования данных. При этом основное внимание уделено отбору данных. Дана оценка применимости различных вариантов отбора данных как инструмента снижения уровня неопределенности. Предложен метод идентификации модели объекта с самовыравниванием по данным, накопленным за значительный период времени в условиях неизвестных возмущений с широким частотным диапазоном. Метод ориентирован на создание модели со стационарными параметрами, не требующей периодической перенастройки под новые условия. Метод основан на совместном применении отбора данных и представлении данных отдельных периодов времени в виде приращений относительно начального для периода момента времени. Это позволяет уменьшить число параметров, которые характеризуют неизвестные возмущения при минимуме допущений, ограничивающих применение метода. В результате снижается размерность поисковой задачи и минимизируются вычислительные затраты, связанные с настройкой модели. Рассмотрены особенности применения метода при нелинейной модели. Метод использован при разработке модели закрытого охлаждения стали на агрегате непрерывного горячего оцинковании стальной полосы. Модель может использоваться при упреждающем управлении тепловыми процессами и при выборе скорости движения полосы. Показано, что метод делает возможным разработку модели тепловых процессов с секции закрытого охлаждения в условиях неизвестных возмущений, имеющих в том числе низкочастотные составляющие.

    The work is devoted to the problem of creating a model with stationary parameters using historical data under conditions of unknown disturbances. The case is considered when a representative sample of object states can be formed using historical data accumulated only over a significant period of time. It is assumed that unknown disturbances can act in a wide frequency range and may have low-frequency and trend components. In such a situation, including data from different time periods in the sample can lead to inconsistencies and greatly reduce the accuracy of the model. The paper provides an overview of approaches and methods for data harmonization. In this case, the main attention is paid to data sampling. An assessment is made of the applicability of various data sampling options as a tool for reducing the level of uncertainty. We propose a method for identifying a self-leveling object model using data accumulated over a significant period of time under conditions of unknown disturbances with a wide frequency range. The method is focused on creating a model with stationary parameters that does not require periodic reconfiguration to new conditions. The method is based on the combined use of sampling and presentation of data from individual periods of time in the form of increments relative to the initial point in time for the period. This makes it possible to reduce the number of parameters that characterize unknown disturbances with a minimum of assumptions that limit the application of the method. As a result, the dimensionality of the search problem is reduced and the computational costs associated with setting up the model are minimized. It is possible to configure both linear and, in some cases, nonlinear models. The method was used to develop a model of closed cooling of steel on a unit for continuous hot-dip galvanizing of steel strip. The model can be used for predictive control of thermal processes and for selecting strip speed. It is shown that the method makes it possible to develop a model of thermal processes from a closed cooling section under conditions of unknown disturbances, including low-frequency components.

  6. Маловичко М.С., Петров И.Б.
    О численном решении совместных обратных задач геофизики с использованием требования структурного подобия
    Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 329-343

    Решение обратных геофизических задач сложно в силу их математически некорректной постановки и большой вычислительной емкости. Геофизическая разведка малоизученных регионов, таких как шельф северных морей, дополнительно осложнена отсутствием надежных геологических данных. В этих условиях большое значение приобретают способы совместного использования информации, полученной различными геофизическими методами. Настоящая работа посвящена развитию подхода к совместной инверсии, основанного на требовании обращения в ноль определителя матрицы Грама для векторов параметров тех типов, которые используются в инверсии. В рамках этого подхода минимизируется нелинейный функционал, состоящий из суммы квадратов взвешенных невязок, суммы стабилизирующих функционалов и члена, отвечающего за наложение условия структурного подобия. Мы применяем этот подход к инверсии двух типов геофизических данных: сейсмики и электроразведки. Мы изучаем инверсию акустических данных совместно с низкочастотным электрическим полем с наложением требования структурного подобия на результирующие распределения скорости звука и электропроводности.

    Рассмотрены постановка задачи обратной задачи и численный метод оптимизации. Нелинейная минимизация выполняется методом сопряженных градиентов. Эффективность разработанного подхода продемонстрирована на численном примере, в котором трехмерное распределение электропроводности считалось известным точно, а распределение скорости звука подбиралось путем решения соответствующей обратной задачи. Для численного эксперимента было использовано распределение скорости звука, построенное на основании упрощенных сейсмических горизонтов реального морского месторождения. Для этого распределения рассчитывались синтетические сейсмограммы, которые служили входными данными для алгоритма инверсии. Результирующее распределение скорости звука не только обеспечивало совпадение данных до заданной точности, но и было согласовано с заданным распределением электропроводности. На численных примерах продемонстрировано, что оптимально выбранный вес структурного ограничения может существенно улучшить детальность решения обратной задачи и позволяет восстановить особенности, которые иначе были бы не разрешены.

    Malovichko M.S., Petrov I.B.
    On numerical solution of joint inverse geophysical problems with structural constraints
    Computer Research and Modeling, 2020, v. 12, no. 2, pp. 329-343

    Inverse geophysical problems are difficult to solve due to their mathematically incorrect formulation and large computational complexity. Geophysical exploration in frontier areas is even more complicated due to the lack of reliable geological information. In this case, inversion methods that allow interpretation of several types of geophysical data together are recognized to be of major importance. This paper is dedicated to one of such inversion methods, which is based on minimization of the determinant of the Gram matrix for a set of model vectors. Within the framework of this approach, we minimize a nonlinear functional, which consists of squared norms of data residual of different types, the sum of stabilizing functionals and a term that measures the structural similarity between different model vectors. We apply this approach to seismic and electromagnetic synthetic data set. Specifically, we study joint inversion of acoustic pressure response together with controlled-source electrical field imposing structural constraints on resulting electrical conductivity and P-wave velocity distributions.

    We start off this note with the problem formulation and present the numerical method for inverse problem. We implemented the conjugate-gradient algorithm for non-linear optimization. The efficiency of our approach is demonstrated in numerical experiments, in which the true 3D electrical conductivity model was assumed to be known, but the velocity model was constructed during inversion of seismic data. The true velocity model was based on a simplified geology structure of a marine prospect. Synthetic seismic data was used as an input for our minimization algorithm. The resulting velocity model not only fit to the data but also has structural similarity with the given conductivity model. Our tests have shown that optimally chosen weight of the Gramian term may improve resolution of the final models considerably.

  7. Данилова М.Ю., Малиновский Г.С.
    Метод тяжелого шарика с усреднением
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 277-308

    Методы оптимизации первого порядка являются важным рабочим инструментов для широкого спектра современных приложений в разных областях, среди которых можно выделить экономику, физику, биологию, машинное обучение и управление. Среди методов первого порядка особого внимания заслуживают ускоренные (моментные) методы в силу их практической эффективности. Метод тяжелого шарика (heavy-ball method — HB) — один из первых ускоренных методов. Данный метод был разработан в 1964 г., и для него был проведен анализ сходимости для квадратичных сильно выпуклых функций. С тех пор были предложены и проанализированы разные варианты HB. В частности, HB известен своей простотой реализации и эффективностью при решении невыпуклых задач. Однако, как и другие моментные методы, он имеет немонотонное поведение; более того, при сходимости HB с оптимальными параметрами наблюдается нежелательное явление, называемое пик-эффектом. Чтобы решить эту проблему, в этой статье мы рассматриваем усредненную версию метода тяжелого шарика (averaged heavy-ball method — AHB). Мы показываем, что для квадратичных задач AHB имеет меньшее максимальное отклонение от решения, чем HB. Кроме того, для общих выпуклых и сильно выпуклых функций доказаны неускоренные скорости глобальной сходимости AHB, его версии WAHB cо взвешенным усреднением, а также для AHB с рестартами R-AHB. Насколько нам известно, такие гарантии для HB с усреднением не были явно доказаны для сильно выпуклых задач в существующих работах. Наконец, мы проводим несколько численных экспериментов для минимизации квадратичных и неквадратичных функций, чтобы продемонстрировать преимущества использования усреднения для HB. Кроме того, мы также протестировали еще одну модификацию AHB, называемую методом tail-averaged heavy-ball (TAHB). В экспериментах мы наблюдали, что HB с правильно настроенной схемой усреднения сходится быстрее, чем HB без усреднения, и имеет меньшие осцилляции.

    Danilova M.Y., Malinovskiy G.S.
    Averaged heavy-ball method
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 277-308

    First-order optimization methods are workhorses in a wide range of modern applications in economics, physics, biology, machine learning, control, and other fields. Among other first-order methods accelerated and momentum ones obtain special attention because of their practical efficiency. The heavy-ball method (HB) is one of the first momentum methods. The method was proposed in 1964 and the first analysis was conducted for quadratic strongly convex functions. Since then a number of variations of HB have been proposed and analyzed. In particular, HB is known for its simplicity in implementation and its performance on nonconvex problems. However, as other momentum methods, it has nonmonotone behavior, and for optimal parameters, the method suffers from the so-called peak effect. To address this issue, in this paper, we consider an averaged version of the heavy-ball method (AHB). We show that for quadratic problems AHB has a smaller maximal deviation from the solution than HB. Moreover, for general convex and strongly convex functions, we prove non-accelerated rates of global convergence of AHB, its weighted version WAHB, and for AHB with restarts R-AHB. To the best of our knowledge, such guarantees for HB with averaging were not explicitly proven for strongly convex problems in the existing works. Finally, we conduct several numerical experiments on minimizing quadratic and nonquadratic functions to demonstrate the advantages of using averaging for HB. Moreover, we also tested one more modification of AHB called the tail-averaged heavy-ball method (TAHB). In the experiments, we observed that HB with a properly adjusted averaging scheme converges faster than HB without averaging and has smaller oscillations.

  8. Ветчанин Е.В., Тененев В.А., Килин А.А.
    Оптимальное управление движением в идеальной жидкости тела c винтовой симметрией с внутренними роторами
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 741-759

    В данной работе рассматривается управляемое движение в идеальной жидкости винтового тела с тремя лопастями за счет вращения трех внутренних роторов. Ставится задача выбора управляющих воздействий, обеспечивающих движение тела вблизи заданной траектории. Для определения управлений, гарантирующих движение вблизи заданной кривой, предложены методы, основанные на применении гибридных генетических алгоритмов (генетические алгоритмы с вещественным кодированием с дополнительным обучением лидера популяции каким-либо градиентным методом) и искусственных нейронных сетей. Корректность работы предложенных численных методов оценивается с помощью полученных ранее дифференциальных уравнений, определяющих закон изменения управляющих воздействий для заданной траектории.

    В подходе на основе гибридных генетических алгоритмов исходная задача минимизации интегрального функционала сводится к минимизации функции многих переменных. Заданный временной интервал разбивается на малые элементы, на каждом из которых управляющие воздействия аппроксимируются полиномами Лагранжа 2 и 3 порядков. Гибридные генетические алгоритмы при соответствующих настройках воспроизводят решение, близкое точному. Однако стоимость расчета 1 секунды физического процесса составляет порядка 300 секунд процессорного времени.

    Для повышения быстродействия расчета управляющих воздействий предложен алгоритм на основе искусственных нейронных сетей. В качестве входного сигнала нейронная сеть принимает компоненты требуемого вектора перемещения. В качестве выходного сигнала возвращаются узловые значения полиномов Лагранжа, приближенно описывающих управляющие воздействия. Нейронная сеть обучается хорошо известным методом обратного распространения ошибки. Обучающая выборка генерируется с помощью подхода на основе гибридных генетических алгоритмов. Расчет 1 секунды физического процесса с помощью нейронной сети требует примерно 0.004 секунды процессорного времени. То есть на 6 порядков быстрее по сравнению в гибридным генетическим алгоритмом. Управление, рассчитанное с помощью искусственной нейронной сети, отличается от точного. Однако, несмотря на данное отличие, обеспечивает достаточно точное следование по заданной траектории.

    Vetchanin E.V., Tenenev V.A., Kilin A.A.
    Optimal control of the motion in an ideal fluid of a screw-shaped body with internal rotors
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 741-759

    In this paper we consider the controlled motion of a helical body with three blades in an ideal fluid, which is executed by rotating three internal rotors. We set the problem of selecting control actions, which ensure the motion of the body near the predetermined trajectory. To determine controls that guarantee motion near the given curve, we propose methods based on the application of hybrid genetic algorithms (genetic algorithms with real encoding and with additional learning of the leader of the population by a gradient method) and artificial neural networks. The correctness of the operation of the proposed numerical methods is estimated using previously obtained differential equations, which define the law of changing the control actions for the predetermined trajectory.

    In the approach based on hybrid genetic algorithms, the initial problem of minimizing the integral functional reduces to minimizing the function of many variables. The given time interval is broken up into small elements, on each of which the control actions are approximated by Lagrangian polynomials of order 2 and 3. When appropriately adjusted, the hybrid genetic algorithms reproduce a solution close to exact. However, the cost of calculation of 1 second of the physical process is about 300 seconds of processor time.

    To increase the speed of calculation of control actions, we propose an algorithm based on artificial neural networks. As the input signal the neural network takes the components of the required displacement vector. The node values of the Lagrangian polynomials which approximately describe the control actions return as output signals . The neural network is taught by the well-known back-propagation method. The learning sample is generated using the approach based on hybrid genetic algorithms. The calculation of 1 second of the physical process by means of the neural network requires about 0.004 seconds of processor time, that is, 6 orders faster than the hybrid genetic algorithm. The control calculated by means of the artificial neural network differs from exact control. However, in spite of this difference, it ensures that the predetermined trajectory is followed exactly.

    Просмотров за год: 12. Цитирований: 1 (РИНЦ).
  9. Гасников А.В., Кубентаева М.Б.
    Поиск стохастических равновесий в транспортных сетях с помощью универсального прямо-двойственного градиентного метода
    Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 335-345

    В статье рассматривается одна из задач транспортного моделирования — поиск равновесного распределения транспортных потоков в сети. Для описания временных издержек и распределения потоков в сети, представляемой с помощью графа, используется классическая модель Бэкмана. При этом поведение агентов не является полностью рациональным, что описывается посредством введения марковской логит-динамики: в каждый момент времени водительвыбирает маршрут случайно согласно распределению Гиббса с учетом текущих временных затрат на ребрах графа. Таким образом, задача сводится к поиску стационарного распределения для данной динамики, которое является стохастическим равновесием Нэша – Вардропа в соответствующей популяционной игре загрузки транспортной сети. Так как данная игра является потенциальной, эта задача эквивалентна минимизации некоторого функционала от распределения потоков, причем стохастичностьпро является в появлении энтропийной регуляризации. Для полученной задачи оптимизации построена двойственная задача. Для ее решения применен универсальный прямо-двойственный градиентный метод. Его особенность заключается в адаптивной настройке на локальную гладкость задачи, что особенно важно при сложной структуре целевой функции и невозможности априорно оценитьг ладкость с приемлемой точностью. Такая ситуация имеет место в рассматриваемой задаче, так как свойства функции сильно зависят от транспортного графа, на который мы не накладываем сильных ограничений. В статье приводится описание алгоритма, в том числе подробно рассмотрено применение численного дифференцирования для вычисления значения и градиента целевой функции. В работе представлены теоретическая оценка времени работы алгоритма и результаты численных экспериментов на примере небольшого американского города.

    Gasnikov A.V., Kubentayeva M.B.
    Searching stochastic equilibria in transport networks by universal primal-dual gradient method
    Computer Research and Modeling, 2018, v. 10, no. 3, pp. 335-345

    We consider one of the problems of transport modelling — searching the equilibrium distribution of traffic flows in the network. We use the classic Beckman’s model to describe time costs and flow distribution in the network represented by directed graph. Meanwhile agents’ behavior is not completely rational, what is described by the introduction of Markov logit dynamics: any driver selects a route randomly according to the Gibbs’ distribution taking into account current time costs on the edges of the graph. Thus, the problem is reduced to searching of the stationary distribution for this dynamics which is a stochastic Nash – Wardrope equilibrium in the corresponding population congestion game in the transport network. Since the game is potential, this problem is equivalent to the problem of minimization of some functional over flows distribution. The stochasticity is reflected in the appearance of the entropy regularization, in contrast to non-stochastic case. The dual problem is constructed to obtain a solution of the optimization problem. The universal primal-dual gradient method is applied. A major specificity of this method lies in an adaptive adjustment to the local smoothness of the problem, what is most important in case of the complex structure of the objective function and an inability to obtain a prior smoothness bound with acceptable accuracy. Such a situation occurs in the considered problem since the properties of the function strongly depend on the transport graph, on which we do not impose strong restrictions. The article describes the algorithm including the numerical differentiation for calculation of the objective function value and gradient. In addition, the paper represents a theoretical estimate of time complexity of the algorithm and the results of numerical experiments conducted on a small American town.

    Просмотров за год: 28.
  10. Beed R.S., Sarkar S., Roy A., Dutta Biswas S., Biswas S.
    A hybrid multi-objective carpool route optimization technique using genetic algorithm and A* algorithm
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 67-85

    Carpooling has gained considerable importance as an effective solution for reducing pollution, mitigation of traffic and congestion on the roads, reduced demand for parking facilities, lesser energy and fuel consumption and most importantly, reduction in carbon emission, thus improving the quality of life in cities. This work presents a hybrid GA-A* algorithm to obtain optimal routes for the carpooling problem in the domain of multiobjective optimization having multiple conflicting objectives. Though the Genetic Algorithm provides optimal solutions, the A* algorithm because of its efficiency in providing the shortest route between any two points based on heuristics, enhances the optimal routes obtained using the Genetic algorithm. The refined routes obtained using the GA-A* algorithm, are further subjected to dominance test to obtain non-dominating solutions based on Pareto-Optimality. The routes obtained maximize the profit of the service provider by minimizing the travel and detour distance as well as pick-up/drop costs while maximizing the utilization of the car. The proposed algorithm has been implemented over the Salt Lake area of Kolkata. Route distance and detour distance for the optimal routes obtained using the proposed algorithm are consistently lesser for the same number of passengers when compared to the corresponding results obtained from an existing algorithm. Various statistical analysis like boxplots have also confirmed that the proposed algorithm regularly performed better than the existing algorithm using only Genetic Algorithm.

    Beed R.S., Sarkar S., Roy A., Dutta Biswas S., Biswas S.
    A hybrid multi-objective carpool route optimization technique using genetic algorithm and A* algorithm
    Computer Research and Modeling, 2021, v. 13, no. 1, pp. 67-85

    Carpooling has gained considerable importance as an effective solution for reducing pollution, mitigation of traffic and congestion on the roads, reduced demand for parking facilities, lesser energy and fuel consumption and most importantly, reduction in carbon emission, thus improving the quality of life in cities. This work presents a hybrid GA-A* algorithm to obtain optimal routes for the carpooling problem in the domain of multiobjective optimization having multiple conflicting objectives. Though the Genetic Algorithm provides optimal solutions, the A* algorithm because of its efficiency in providing the shortest route between any two points based on heuristics, enhances the optimal routes obtained using the Genetic algorithm. The refined routes obtained using the GA-A* algorithm, are further subjected to dominance test to obtain non-dominating solutions based on Pareto-Optimality. The routes obtained maximize the profit of the service provider by minimizing the travel and detour distance as well as pick-up/drop costs while maximizing the utilization of the car. The proposed algorithm has been implemented over the Salt Lake area of Kolkata. Route distance and detour distance for the optimal routes obtained using the proposed algorithm are consistently lesser for the same number of passengers when compared to the corresponding results obtained from an existing algorithm. Various statistical analysis like boxplots have also confirmed that the proposed algorithm regularly performed better than the existing algorithm using only Genetic Algorithm.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.