Текущий выпуск Номер 1, 2021 Том 13
Результаты поиска по 'метод наименьших квадратов':
Найдено статей: 13
  1. Чуйко С.М., Старкова О.В., Чуйко А.С.
    Автономная нетерова краевая задача в частном критическом случае
    Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 337-351

    Найдены необходимые и достаточные условия существования решений нелинейной автономной краевой задачи в частном критическом случае. Характерной особенностью поставленной задачи является невозможность непосредственного применения традиционной схемы исследования и построения решений критических краевых задач, созданной в работах И.Г. Малкина, А.М. Самойленко, Е.А. Гребеникова, Ю.А. Рябова и А.А. Бойчука. Для построения решений нелинейной нетеровой краевой задачи в частном критическом случае предложена итерационная схема, построенная по схеме метода наименьших квадратов. Эффективность техники продемонстрирована на примере анализа периодической задачи для уравнения типа Хилла.

    Просмотров за год: 4. Цитирований: 1 (РИНЦ).
  2. Федосова А.Н., Силаев Д.А.
    Математическое моделирование изгиба круговой пластинки с применением $S$-сплайнов
    Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 977-988

    Настоящая работа посвящена применению теории недавно разработанных полулокальных сглаживающих сплайнов, или $S$-сплайнов высоких степеней, к решению задач теории упругости. $S$-сплайн — кусочно-полиномиальная функция, коэффициенты полиномов которой определяются из двух условий: первая часть коэффициентов определяется условиями гладкой склейки, остальные определяются методом наименьших квадратов. Мы рассмотрим, каким образом могут быть применены сплайны 7-ой степени класса $C^4$ при решении бигармонического уравнения на круге.

    Просмотров за год: 4.
  3. От редакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 673-675
    Просмотров за год: 1.
  4. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 5-8
  5. Чуйко С.М., Старкова О.В.
    Модифицированная двухшаговая итерационная техника для построения функций Матье
    Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 31-43

    Предложена модифицированная двухшаговая итерационная техника, построенная по схеме метода наименьших квадратов, определяющая последовательные приближения к периодическим решениям уравнения Матье и его собственным функциям, значительно превосходящие по точности ранее известные результаты.

    Просмотров за год: 1.
  6. Силаев Д.А.
    Полулокальные сглаживающие S-сплайны
    Компьютерные исследования и моделирование, 2010, т. 2, № 4, с. 349-357

    Настоящая работа посвящена периодическим и непериодическим полулокальным сглаживающим сплайнам или S-сплайнам класса Cp, состоящим из полиномов степени n.
    Первые p + 1 коэффициентов каждого полинома задаются значениями предыдущего полинома и его p первых производных в точке склейки, остальные np коэффициентов при старших производных полинома определяются методом наименьших квадратов. Эти условия дополняются или начальными условиями (непериодический случай), или условием периодичности сплайн-функции на отрезке определения. В работе выписана система линейных уравнений, определяющих коэффициенты полиномов, составляющих сплайн. Матрица системы имеет блочный вид. Доказаны теоремы существования и единственности. Показано, что сходимость сплайнов к исходной функции зависит от величин собственных значений матрицы устойчивости. Приведены примеры устойчивых S-сплайнов.

    Просмотров за год: 1. Цитирований: 6 (РИНЦ).
  7. Чуйко С.М., Старкова О.В., Кулиш П.В.
    Периодическая задача для уравнения Хилла в случае параметрического резонанса
    Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 27-43

    Найдены необходимые и достаточные условия существования решений нелинейной неавтономной периодической задачи для уравнения типа Хилла в случае параметрического резонанса. Характерной особенностью поставленной задачи является необходимость нахождения как искомого решения, так и соответствующей собственной функции, обеспечивающей разрешимость периодической задачи для уравнения типа Хилла в случае параметрического резонанса. Для построения решений периодической задачи для уравнения типа Хилла и соответствующей собственной функции в случае параметрического резонанса предложены итерационные схемы, построенные методу простых итераций, а также с использованием техники наименьших квадратов.

    Просмотров за год: 1.
  8. Силаев Д.А., Коротаев Д.О.
    Решение краевых задач с помощью S-сплайна
    Компьютерные исследования и моделирование, 2009, т. 1, № 2, с. 161-171

    Данная работа посвящена применению теории S-сплайнов для решения уравнений в частных производных на примере уравнения Пуассона. S-сплайн — кусочно-полиномиальная функция, коэффициенты полиномов которой определяются из двух условий: первая часть коэффициентов определяется условиями гладкой склейки, остальные определяются методом наименьших квадратов. В зависимости от порядка рассматриваемых полиномов и соотношения между количеством условий первого и второго типов мы получаем S-сплайны с разными свойствами. На настоящий момент изучены сплайны 3-й степени класса C1 и сплайны 5-й степени класса C2(т.е. на них накладывались условия гладкой склейки вплоть до первой и второй производных соответственно). Мы рассмотрим, каким образом могут быть применены сплайны 3-й степени класса C1 при решении уравнения Пуассона на круге и в других областях.

    Просмотров за год: 8. Цитирований: 8 (РИНЦ).
  9. Михеев А.В., Казаков Б.Н.
    Новый метод точечной оценки параметров парной регрессии
    Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 57-77

    Описывается новый метод отыскания параметров однофакторной регрессионной модели: метод наибольшего косинуса. Реализация метода предполагает разделение параметров модели на две группы. Параметры первой группы, отвечающие за угол между вектором экспериментальных данных и вектором регрессионной модели, определяются по максимуму косинуса угла между этими векторами. Во вторую группу входит масштабный множитель. Он определяется «спрямлением» зависимости координат вектора экспериментальных данных от координат вектора регрессионной модели. Исследована взаимосвязь метода наибольшего косинуса с методом наименьших квадратов. Эффективность метода проиллюстрирована примерами из физики.

    Просмотров за год: 2. Цитирований: 4 (РИНЦ).
  10. Говорухин В.Н., Филимонова А.М.
    Расчет плоских геофизических течений невязкой несжимаемой жидкости бессеточно-спектральным методом
    Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 413-426

    Предложен бессеточно-спектральный метод расчета динамики плоских вихревых течений невязкой несжимаемой жидкости в геофизических приближениях с учетом планетарного вращения. Математически задача описывается системой двух уравнений в частных производных относительно функций тока и завихренности с различными граничными условиями (замкнутая область течения и периодические условия). В основе метода лежат следующие положения: поле завихренности задано значениями на множестве частиц; функция завихренности приближается с помощью кусочно-непрерывной аппроксимации кубическими полиномами от двух пространственных переменных; коэффициенты полиномов находятся методом наименьших квадратов; функция тока на каждом временном шаге находится методом Бубнова–Галёркина; динамика жидких частиц рассчитывается псевдосимплектическим методом Рунге–Кутты. В статье впервые подробно описан вариант метода для периодических граничных условий. Адекватность численной схемы проверена на тестовых примерах.

    В численном эксперименте исследована динамика конфигурации четырех круглых вихревых пятен с одинаковымр адиусоми постоянной завихренностью, расположенных в вершинах квадрата с центром в полюсе. Изучено влияние планетарного вращения и радиуса пятен на динамику и формирование вихревых структур. Показано, что в случае достаточно большого расстояния между границами вихревых пятен их динамика близка к поведению точечных вихрей с той же интенсивностью. При росте радиуса возникает взаимодействие между вихрями, которое приводит к их слиянию. В зависимости от направления вращения сила Кориолиса может усиливать или замедлять процессы взаимодействия и перемешивания вихрей. Так, вихревая структура из четырех вихрей при небольших радиусах пятен стабилизируется в случае сонаправленности собственного и планетарного вращений и разрушается на меньших временах при противоположных направлениях. При больших радиусах вихревая структура не стабилизируется.

    Просмотров за год: 16.
Страницы: следующая

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал входит в Перечень российских рецензируемых научных журналов, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученых степеней доктора и кандидата наук ВАК, группы специальностей: 01.01.00, 01.02.00.
 

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал индексируется в Scopus