Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'minimization problem':
Найдено статей: 59
  1. Tran T.T., Pham C.T.
    A hybrid regularizers approach based model for restoring image corrupted by Poisson noise
    Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 965-978

    Image denoising is one of the fundamental problems in digital image processing. This problem usually refers to the reconstruction of an image from an observed image degraded by noise. There are many factors that cause this degradation such as transceiver equipment, or environmental influences, etc. In order to obtain higher quality images, many methods have been proposed for image denoising problem. Most image denoising method are based on total variation (TV) regularization to develop efficient algorithms for solving the related optimization problem. TV-based models have become a standard technique in image restoration with the ability to preserve image sharpness.

    In this paper, we focus on Poisson noise usually appearing in photon-counting devices. We propose an effective regularization model based on combination of first-order and fractional-order total variation for image reconstruction corrupted by Poisson noise. The proposed model allows us to eliminate noise while edge preserving. An efficient alternating minimization algorithm is employed to solve the optimization problem. Finally, provided numerical results show that our proposed model can preserve more details and get higher image visual quality than recent state-of-the-art methods.

    Tran T.T., Pham C.T.
    A hybrid regularizers approach based model for restoring image corrupted by Poisson noise
    Computer Research and Modeling, 2021, v. 13, no. 5, pp. 965-978

    Image denoising is one of the fundamental problems in digital image processing. This problem usually refers to the reconstruction of an image from an observed image degraded by noise. There are many factors that cause this degradation such as transceiver equipment, or environmental influences, etc. In order to obtain higher quality images, many methods have been proposed for image denoising problem. Most image denoising method are based on total variation (TV) regularization to develop efficient algorithms for solving the related optimization problem. TV-based models have become a standard technique in image restoration with the ability to preserve image sharpness.

    In this paper, we focus on Poisson noise usually appearing in photon-counting devices. We propose an effective regularization model based on combination of first-order and fractional-order total variation for image reconstruction corrupted by Poisson noise. The proposed model allows us to eliminate noise while edge preserving. An efficient alternating minimization algorithm is employed to solve the optimization problem. Finally, provided numerical results show that our proposed model can preserve more details and get higher image visual quality than recent state-of-the-art methods.

  2. Двинских Д.М., Пырэу В.В., Гасников А.В.
    О связях задач стохастической выпуклой минимизации с задачами минимизации эмпирического риска на шарах в $p$-нормах
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 309-319

    В данной работе рассматриваются задачи выпуклой стохастической оптимизации, возникающие в анализе данных (минимизация функции риска), а также в математической статистике (минимизация функции правдоподобия). Такие задачи могут быть решены как онлайн-, так и офлайн-методами (метод Монте-Карло). При офлайн-подходе исходная задача заменяется эмпирической задачей — задачей минимизации эмпирического риска. В современном машинном обучении ключевым является следующий вопрос: какой размер выборки (количество слагаемых в функционале эмпирического риска) нужно взять, чтобы достаточно точное решение эмпирической задачи было решением исходной задачи с заданной точностью. Базируясь на недавних существенных продвижениях в машинном обучении и оптимизации для решения выпуклых стохастических задач на евклидовых шарах (или всем пространстве), мы рассматриваем случай произвольных шаров в $p$-нормах и исследуем, как влияет выбор параметра $p$ на оценки необходимого числа слагаемых в функции эмпирического риска.

    В данной работе рассмотрены как выпуклые задачи оптимизации, так и седловые. Для сильно выпуклых задач были обобщены уже имеющиеся результаты об одинаковых размерах выборки в обоих подходах (онлайн и офлайн) на произвольные нормы. Более того, было показано, что условие сильной выпуклости может быть ослаблено: полученные результаты справедливы для функций, удовлетворяющих условию квадратичного роста. В случае когда данное условие не выполняется, предлагается использовать регуляризацию исходной задачи в произвольной норме. В отличие от выпуклых задач седловые задачи являются намного менее изученными. Для седловых задач размер выборки был получен при условии $\gamma$-роста седловой функции по разным группам переменных. Это условие при $\gamma = 1$ есть не что иное, как аналог условия острого минимума в выпуклых задач. В данной статье было показано, что размер выборки в случае острого минимума (седла) почти не зависит от желаемой точности решения исходной задачи.

    Dvinskikh D.M., Pirau V.V., Gasnikov A.V.
    On the relations of stochastic convex optimization problems with empirical risk minimization problems on $p$-norm balls
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 309-319

    In this paper, we consider convex stochastic optimization problems arising in machine learning applications (e. g., risk minimization) and mathematical statistics (e. g., maximum likelihood estimation). There are two main approaches to solve such kinds of problems, namely the Stochastic Approximation approach (online approach) and the Sample Average Approximation approach, also known as the Monte Carlo approach, (offline approach). In the offline approach, the problem is replaced by its empirical counterpart (the empirical risk minimization problem). The natural question is how to define the problem sample size, i. e., how many realizations should be sampled so that the quite accurate solution of the empirical problem be the solution of the original problem with the desired precision. This issue is one of the main issues in modern machine learning and optimization. In the last decade, a lot of significant advances were made in these areas to solve convex stochastic optimization problems on the Euclidean balls (or the whole space). In this work, we are based on these advances and study the case of arbitrary balls in the $p$-norms. We also explore the question of how the parameter $p$ affects the estimates of the required number of terms as a function of empirical risk.

    In this paper, both convex and saddle point optimization problems are considered. For strongly convex problems, the existing results on the same sample sizes in both approaches (online and offline) were generalized to arbitrary norms. Moreover, it was shown that the strong convexity condition can be weakened: the obtained results are valid for functions satisfying the quadratic growth condition. In the case when this condition is not met, it is proposed to use the regularization of the original problem in an arbitrary norm. In contradistinction to convex problems, saddle point problems are much less studied. For saddle point problems, the sample size was obtained under the condition of $\gamma$-growth of the objective function. When $\gamma = 1$, this condition is the condition of sharp minimum in convex problems. In this article, it was shown that the sample size in the case of a sharp minimum is almost independent of the desired accuracy of the solution of the original problem.

  3. Чернядьев С.А., Жиляков А.В., Горбатов В.И., Коробова Н.Ю., Сивкова Н.И., Аретинский А.В., Чернооков А.И.
    Математическое моделирование теплофизических процессов в стенке кисты Бейкера, при нагреве внутрикистозной жидкости лазерным излучением длиной волны 1.47 мкм
    Компьютерные исследования и моделирование, 2018, т. 10, № 1, с. 103-112

    Работа посвящена теоретическому изучению величины деструктивного влияния на нормальные ткани организма инфракрасным излучением, выходящим за пределы обрабатываемого патологического очага. Такая ситуация возможна при сверхдлительном воздействии прямого лазерного излучения на биоткани. Решением этой проблемы может служить равномерное распределение тепла внутри объема через опосредованное нагревание жидкости, что способствует минимальному повреждению перифокальных структур. Представлена нестационарная теплофизическая модель процесса распространения тепла в биотканях, позволяющая проводить исследования передачи энергии от внутреннего жидкого содержимого кисты Бейкера, нагреваемого инфракрасным лазерным излучением заданной удельной мощности, через определенную толщину ее стенки к окружающим биологическим тканям. Расчет пространственно-временного распределения температуры в стенке кисты и окружающей жировой ткани осуществляется конечно-разностным методом. Время эффективного воздействия температуры на всю толщину стенки кисты оценивалось достижением 55 °С на ее наружной поверхности. Безопасность процедуры обеспечивает длительность экспозиции данной величины не более 10 секунд.

    В результате проведенных вычислений установлено, что имеются несколько режимов работы хирургического лазера, соответствующих всем требованиям безопасности при одновременной эффективности процедуры. Локальная односторонняя гипертермия синовиальной оболочки и последующая коагуляция всей толщины стенки за счет переноса тепла способствуют ликвидации полостного новообразования подколенной области. При ее толщине 3 мм удовлетворительным является режим нагрева, при котором время воздействия длится около 200 секунд, а удельная мощность лазерного излучения во внутренней среде жидкостного содержимого кисты Бейкера составляет примерно 1 Вт/г.

    Chernyadiev S.A., Zhilyakov A.V., Gorbatov V.I., Korobova N.Y., Sivkova N.I., Aretinsky A.V., Chernookov A.I.
    Mathematical modeling of thermophysical processes in the wall of the Baker cyst, when intra-cystic fluid is heated by laser radiation 1.47 μm in length
    Computer Research and Modeling, 2018, v. 10, no. 1, pp. 103-112

    The work is devoted to the study of the theoretical value of destructive influence on normal tissues of an organism by infrared radiation that goes beyond the treated pathological focus. This situation is possible if the direct laser radiation on the tissues is extremely long-acting. The solution to this problem can be the uniform distribution of heat inside the volume through indirect heating of the liquid, which contributes to minimal damage to the perifocal structures. A non-stationary thermophysical model of the process of heat propagation in biological tissues is presented, allowing to carry out studies of energy transfer from internal liquid contents of Baker's cyst heated by infrared laser radiation of a given specific power through a certain thickness of its wall to surrounding biological tissues. Calculation of the spacetime temperature distribution in the cyst wall and surrounding fat tissue is carried out by the finite-difference method. The time of effective exposure to temperature on the entire thickness of the cyst wall was estimated to be 55 ° C on its outer surface. The safety procedure ensures the exposure duration of this value is not more than 10 seconds.

    As a result of the calculations carried out, it is established that there are several operating modes of a surgical laser that meet all the safety requirements with a simultaneous effective procedure. Local one-sided hyperthermia of the synovial membrane and subsequent coagulation of the entire wall thickness due to heat transfer contributes to the elimination of the cavity neoplasm of the popliteal region. With a thickness of 3 mm, the heating mode is satisfactory, under which the exposure time lasts about 200 seconds, and the specific power of the laser radiation in the internal medium of the liquid contents of the Baker cyst is approximately 1.

    Просмотров за год: 21. Цитирований: 2 (РИНЦ).
  4. Двуреченский П.Е.
    Градиентный метод с неточным оракулом для задач композитной невыпуклой оптимизации
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 321-334

    В этой статье мы предлагаем новый метод первого порядка для композитных невыпуклых задач минимизации с простыми ограничениями и неточным оракулом. Целевая функция задается как сумма «сложной», возможно, невыпуклой части с неточным оракулом и «простой» выпуклой части. Мы обобщаем понятие неточного оракула для выпуклых функций на случай невыпуклых функций. Неформально говоря, неточность оракула означает, что для «сложной» части в любой точке можно приближенно вычислить значение функции и построить квадратичную функцию, которая приближенно ограничивает эту функцию сверху. Рассматривается два возможных типа ошибки: контролируемая, которая может быть сде- лана сколь угодно маленькой, например, за счет решения вспомогательной задачи, и неконтролируемая. Примерами такой неточности являются: гладкие невыпуклые функции с неточным и непрерывным по Гёльдеру градиентом, функции, заданные вспомогательной равномерно вогнутой задачей максимизации, которая может быть решена лишь приближенно. Для введенного класса задачм ы предлагаем метод типа проекции градиента / зеркального спуска, который позволяет использовать различные прокс-функции для задания неевклидовой проекции на допустимое множество и более гибкой адаптации к геометрии допустимого множества; адаптивно выбирает контролируемую ошибку оракула и ошибку неевклидового проектирования; допускает неточное проксимальное отображение с двумя типами ошибки: контролируемой и неконтролируемой. Мы доказываем скорость сходимости нашего метода в терминах нормы обобщенного градиентного отображения и показываем, что в случае неточного непрерывного по Гёльдеру градиента наш метод является универсальным по отношению к параметру и константе Гёльдера. Это означает, что методу не нужно знание этих параметров для работы. При этом полученная оценка сложности является равномерно наилучшей при всех параметрах Гёльдера. Наконец, в частном случае показано, что малое значение нормы обобщенного градиентного отображения в точке означает, что в этой точке приближенно выполняется необходимое условие локального минимума.

    Dvurechensky P.E.
    A gradient method with inexact oracle for composite nonconvex optimization
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 321-334

    In this paper, we develop a new first-order method for composite nonconvex minimization problems with simple constraints and inexact oracle. The objective function is given as a sum of «hard», possibly nonconvex part, and «simple» convex part. Informally speaking, oracle inexactness means that, for the «hard» part, at any point we can approximately calculate the value of the function and construct a quadratic function, which approximately bounds this function from above. We give several examples of such inexactness: smooth nonconvex functions with inexact H¨older-continuous gradient, functions given by the auxiliary uniformly concave maximization problem, which can be solved only approximately. For the introduced class of problems, we propose a gradient-type method, which allows one to use a different proximal setup to adapt to the geometry of the feasible set, adaptively chooses controlled oracle error, allows for inexact proximal mapping. We provide a convergence rate for our method in terms of the norm of generalized gradient mapping and show that, in the case of an inexact Hölder-continuous gradient, our method is universal with respect to Hölder parameters of the problem. Finally, in a particular case, we show that the small value of the norm of generalized gradient mapping at a point means that a necessary condition of local minimum approximately holds at that point.

  5. Давыдов Д.В., Шаповал А.Б., Ямилов А.И.
    Распространение языков в КНР на уровне провинций: оценивание при неполных данных
    Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 707-716

    Данная работа посвящена решению практической задачи восстановления данных по распространению языков на региональном уровне на примере Китайской Народной Республики. Необходимость получения таких данных связана с задачей вычисления индексов лингвистического разнообразия, которые, в свою очередь, активно используются при эмпирическом анализе и прогнозе факторов социально-экономического развития, а также могут служить индикаторами потенциальных конфликтов на рассматриваемых территориях. В качестве исходной информации мы используем сведения из базы данных «Этнолог» (Ethnologue), дополняя их общедоступными данными переписей населения. Рассматриваемые нами данные содержат по каждому языку (а) оценку количества жителей страны, считающих этот язык родным, и (б) индикаторы наличия таких жителей в каждой из провинций КНР. Наша задача — для всех пар «язык–провинция» оценить количество жителей провинции, считающих этот язык родным. Она сводится к решению недоопределенной системы алгебраических уравнений. Специфика данных Ethnologue заключается в том, что, в силу большой трудоемкости и стоимости сбора таких данных, а также неполноты сведений по соответствующему разделу в переписях населения, имеющаяся информация по отдельным языкам в различных провинциях представлена за различные периоды времени. Одновременное использование таких данных приводит к тому, что возникающая система уравнений имеет неточно определенную правую часть, поэтому мы строим приближенное решение, характеризуемое минимальной невязкой. Учитывая неоднородность исходных данных (некоторые из языков оказываются на порядки менее распространенными), мы переходим к использованию взвешенной невязки, определяя в каждом уравнении весовые коэффициенты как величины, обратно пропорциональные правой части. Такой способ формирования невязки позволяет восстановить искомые переменные. Более 92% переменных оказываются устойчивыми к изменениям правой части при вероятностном моделировании ошибок записей в исходных данных.

    Davydov D.V., Shapoval A.B., Yamilov A.I.
    Languages in China provinces: quantitative estimation with incomplete data
    Computer Research and Modeling, 2016, v. 8, no. 4, pp. 707-716

    This paper formulates and solves a practical problem of data recovery regarding the distribution of languages on regional level in context of China. The necessity of this recovery is related to the problem of the determination of the linguistic diversity indices, which, in turn, are used to analyze empirically and to predict sources of social and economic development as well as to indicate potential conflicts at regional level. We use Ethnologue database and China census as the initial data sources. For every language spoken in China, the data contains (a) an estimate of China residents who claim this language to be their mother tongue, and (b) indicators of the presence of such residents in China provinces. For each pair language/province, we aim to estimate the number of the province inhabitants that claim the language to be their mother tongue. This base problem is reduced to solving an undetermined system of algebraic equations. Given additional restriction that Ethnologue database introduces data collected at different time moments because of gaps in Ethnologue language surveys and accompanying data collection expenses, we relate those data to a single time moment, that turns the initial task to an ’ill-posed’ system of algebraic equations with imprecisely determined right hand side. Therefore, we are looking for an approximate solution characterized by a minimal discrepancy of the system. Since some languages are much less distributed than the others, we minimize the weighted discrepancy, introducing weights that are inverse to the right hand side elements of the equations. This definition of discrepancy allows to recover the required variables. More than 92% of the recovered variables are robust to probabilistic modelling procedure for potential errors in initial data.

    Просмотров за год: 3.
  6. Коваленко С.Ю., Юсубалиева Г.М.
    Задача выживаемости для математической модели терапии глиомы с учетом гематоэнцефалического барьера
    Компьютерные исследования и моделирование, 2018, т. 10, № 1, с. 113-123

    В статье предлагается математическая модель терапии глиомы с учетом гематоэнцефалического барьера, радиотерапии и терапии антителами. Проведена оценка параметров по экспериментальным данным, а также оценка влияния значений параметров на эффективность лечения и прогноз болезни. Исследованы возможные варианты последовательного применения радиотерапии и воздействия антител. Комбинированное применение радиотерапии с внутривенным введением $mab$ $Cx43$ приводит к потенцированию терапевтического эффекта при глиоме. Радиотерапия должна предшествовать химиотерапии, поскольку радиовоздействие уменьшает барьерную функцию эндотелиальных клеток. Эндотелиальные клетки сосудовмоз га плотно прилегают друг к другу. Между их стенками образуются так называемые плотные контакты, роль которых во беспечении ГЭБ состоит в том, что они предотвращают проникновение в ткань мозга различных нежелательных веществ из кровеносного русла. Плотные контакты между эндотелиальными клетками блокируют межклеточный пассивный транспорт.

    Математическая модель состоит из непрерывной части и дискретной. Экспериментальные данные объема глиомы показывают следующую интересную динамику: после прекращения радиовоздействия рост опухоли не возобновляется сразу же, а существует некоторый промежуток времени, в течение которого глиома не растет. Клетки глиомы разделены на две группы. Первая группа — живые клетки, делящиеся с максимально возможной скоростью. Вторая группа — клетки, пострадавшие от радиации. В качестве показателя здоровья системы гематоэнцефалического барьера выбрано отношение количества клеток ГЭБ вт екущий момент к количеству клеток всо стоянии покоя, то есть всре днем здоровом состоянии.

    Непрерывная часть модели включает в себя описание деления обоих типов клеток глиомы, восстановления клеток ГЭБ, а также динамику лекарственного средства. Уменьшение количества хорошо функционирующих клеток ГЭБ облегчает проникновение лекарственного средства к клеткам мозга, то есть усиливает действие лекарства. При этом скорость деления клеток глиомы не увеличивается, поскольку ограничена не дефицитом питательных веществ, доступных клеткам, а внутренними механизмами клетки. Дискретная часть математической модели включает в себя оператор радиовоздействия, который применяется к показателю ГЭБ и к глиомным клеткам.

    В рамках математической модели лечения раковой опухоли (глиомы) решается задача оптимального управления с фазовыми ограничениями. Состояние пациента описывается двумя переменными: объемом опухоли и состоянием ГЭБ. Фазовые ограничения очерчивают некоторую область в пространстве этих показателей, которую мы называем областью выживаемости. Наша задача заключается в поиске таких стратегий лечения, которые минимизируют время лечения, максимизируют время отдыха пациента и при этом позволяют показателям состояния не выходить за разрешенные пределы. Поскольку задача выживаемости состоит в максимизации времени жизни пациента, то ищутся именно такие стратегии лечения, которые возвращают показатели в исходное положение (и мы видим на графиках периодические траектории). Периодические траектории говорят о том, что смертельно опасная болезнь переведена враз ряд хронических.

    Kovalenko S.Yu., Yusubalieva G.M.
    Survival task for the mathematical model of glioma therapy with blood-brain barrier
    Computer Research and Modeling, 2018, v. 10, no. 1, pp. 113-123

    The paper proposes a mathematical model for the therapy of glioma, taking into account the blood-brain barrier, radiotherapy and antibody therapy. The parameters were estimated from experimental data and the evaluation of the effect of parameter values on the effectiveness of treatment and the prognosis of the disease were obtained. The possible variants of sequential use of radiotherapy and the effect of antibodies have been explored. The combined use of radiotherapy with intravenous administration of $mab$ $Cx43$ leads to a potentiation of the therapeutic effect in glioma.

    Radiotherapy must precede chemotherapy, as radio exposure reduces the barrier function of endothelial cells. Endothelial cells of the brain vessels fit tightly to each other. Between their walls are formed so-called tight contacts, whose role in the provision of BBB is that they prevent the penetration into the brain tissue of various undesirable substances from the bloodstream. Dense contacts between endothelial cells block the intercellular passive transport.

    The mathematical model consists of a continuous part and a discrete one. Experimental data on the volume of glioma show the following interesting dynamics: after cessation of radio exposure, tumor growth does not resume immediately, but there is some time interval during which glioma does not grow. Glioma cells are divided into two groups. The first group is living cells that divide as fast as possible. The second group is cells affected by radiation. As a measure of the health of the blood-brain barrier system, the ratios of the number of BBB cells at the current moment to the number of cells at rest, that is, on average healthy state, are chosen.

    The continuous part of the model includes a description of the division of both types of glioma cells, the recovery of BBB cells, and the dynamics of the drug. Reducing the number of well-functioning BBB cells facilitates the penetration of the drug to brain cells, that is, enhances the action of the drug. At the same time, the rate of division of glioma cells does not increase, since it is limited not by the deficiency of nutrients available to cells, but by the internal mechanisms of the cell. The discrete part of the mathematical model includes the operator of radio interaction, which is applied to the indicator of BBB and to glial cells.

    Within the framework of the mathematical model of treatment of a cancer tumor (glioma), the problem of optimal control with phase constraints is solved. The patient’s condition is described by two variables: the volume of the tumor and the condition of the BBB. The phase constraints delineate a certain area in the space of these indicators, which we call the survival area. Our task is to find such treatment strategies that minimize the time of treatment, maximize the patient’s rest time, and at the same time allow state indicators not to exceed the permitted limits. Since the task of survival is to maximize the patient’s lifespan, it is precisely such treatment strategies that return the indicators to their original position (and we see periodic trajectories on the graphs). Periodic trajectories indicate that the deadly disease is translated into a chronic one.

    Просмотров за год: 14.
  7. Варшавский Л.Е.
    Моделирование динамики экономических систем с неопределенными параметрами
    Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 261-276

    В статье проводится краткий анализ разработанных робастных методов управления, а также исследование практических аспектов их использования для управления экономическими системами с неопределенными параметрами. Рассматриваются особенности использования разработанных методов управления системами при наличии структурированной неопределенности применительно к задачам стабилизации цены на мировом рынке нефти, а также инфляции в макроэкономических системах. В первом случае с использованием специально разработанной модели ставится задача определения такого управления, которое обеспечивает минимальное отклонение цены нефти от желаемого уровня. Во втором случае решается задача формирования стабилизирующего управления, обеспечивающего в среднесрочной перспективе минимальное отклонение инфляции от желаемого уровня (на основе агрегированной макроэкономической модели среднесрочного развития США).

    В результате вычислительных экспериментов найдены предельные уровни неопределенности параметров и законы обратной связи, при которых используемый в работе подход обеспечивает стабилизируемость реальных экономических систем. Проведенные расчеты показывают, что полученные оценки предельных уровней неопределенности параметров являются достаточно консервативными. С помощью метода статистических испытаний исследуется динамика цены на нефть, а также показателя инфляции в условиях найденных предельных уровней неопределенности параметров при использовании рассчитанных робастных законов управления, в случае наихудшего и наилучшего сценариев. Полученные результаты показывают, что рассчитанные робастные законы управления могут быть успешно применены и при большей степени неопределенности параметров исследуемых моделей, чем гарантируется при найденных предельных уровнях неопределенности.

    Varshavsky L.E.
    Uncertainty factor in modeling dynamics of economic systems
    Computer Research and Modeling, 2018, v. 10, no. 2, pp. 261-276

    Analysis and practical aspects of implementing developed in the control theory robust control methods in studying economic systems is carried out. The main emphasis is placed on studying results obtained for dynamical systems with structured uncertainty. Practical aspects of implementing such results in control of economic systems on the basis of dynamical models with uncertain parameters and perturbations (stabilization of price on the oil market and inflation in macroeconomic systems) are discussed. With the help of specially constructed aggregate model of oil price dynamics studied the problem of finding control which provides minimal deviation of price from desired levels over middle range period. The second real problem considered in the article consists in determination of stabilizing control providing minimal deviation of inflation from desired levels (on the basis of constructed aggregate macroeconomic model of the USA over middle range period).

    Upper levels of parameters uncertainty and control laws guaranteeing stabilizability of the real considered economic systems have been found using the robust method of control with structured uncertainty. At the same time we have come to the conclusion that received estimates of parameters uncertainty upper levels are conservative. Monte-Carlo experiments carried out for the article made it possible to analyze dynamics of oil price and inflation under received limit levels of models parameters uncertainty and under implementing found robust control laws for the worst and the best scenarios. Results of these experiments show that received robust control laws may be successfully used under less stringent uncertainty constraints than it is guaranteed by sufficient conditions of stabilization.

    Просмотров за год: 39.
  8. Пучинин С.М., Корольков Е.Р., Стонякин Ф.С., Алкуса М.С., Выгузов А.А.
    Cубградиентные методы с шагом типа Б. Т. Поляка для задач минимизации квазивыпуклых функций с ограничениями-неравенствами и аналогами острого минимума
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 105-122

    В работе рассмотрено два варианта понятия острого минимума для задач математического программирования с квазивыпуклой целевой функцией и ограничениями-неравенствами. Исследована задача описания варианта простого субградиентного метода с переключениями по продуктивным и непродуктивным шагам, для которого бы на классе задач с липшицевыми функциями можно было гарантировать сходимость со скоростью геометрической прогрессии ко множеству точных решений или его окрестности. При этом важно, чтобы для реализации метода не было необходимости знать параметр острого минимума, который обычно сложно оценить на практике. В качестве решения проблемы авторы предлагают использовать процедуру регулировки шага, аналогичную предложенной ранее Б. Т. Поляком. Однако при этом более остро по сравнению с классом задач без ограничений встает проблема знания точного значения минимума целевой функции. В работе описываются условия на погрешность этой информации, которые позволяют сохранить сходимость со скоростью геометрической прогрессии в окрестность множества точек минимума задачи. Рассмотрено два аналога понятия острого минимума для задач с ограничениями-неравенствами. В первом случае возникает проблема приближения к точному решению лишь до заранее выбранного уровня точности, при этом рассматривается случай, когда минимальное значение целевой функции неизвестно, вместо этого дано некоторое его приближение. Описаны условия на неточность минимума целевой функции, при которой все еще сохраняется сходимость к окрестности искомого множества точек со скоростью геометрической прогрессии. Второй рассматриваемый вариант острого минимума не зависит от желаемой точности задачи. Для него предложен несколько иной способ проверки продуктивности шага, позволяющий в случае точной информации гарантировать сходимость метода к точному решению со скоростью геометрической прогрессии. Доказаны оценки сходимости в условиях слабой выпуклости ограничений и некоторых ограничениях на выбор начальной точки, а также сформулирован результат-следствие для выпуклого случая, когда необходимость дополнительного предположения о выборе начальной точки пропадает. Для обоих подходов доказано убывание расстояния от текущей точки до множества решений с ростом количества итераций. Это, в частности, позволяет ограничить требования используемых свойств функций (липшицевость, острый минимум) лишь для ограниченного множества. Выполнены вычислительные эксперименты, в том числе для задачи проектирования механических конструкций.

    Puchinin S.M., Korolkov E.R., Stonyakin F.S., Alkousa M.S., Vyguzov A.A.
    Subgradient methods with B.T. Polyak-type step for quasiconvex minimization problems with inequality constraints and analogs of the sharp minimum
    Computer Research and Modeling, 2024, v. 16, no. 1, pp. 105-122

    In this paper, we consider two variants of the concept of sharp minimum for mathematical programming problems with quasiconvex objective function and inequality constraints. It investigated the problem of describing a variant of a simple subgradient method with switching along productive and non-productive steps, for which, on a class of problems with Lipschitz functions, it would be possible to guarantee convergence with the rate of geometric progression to the set of exact solutions or its vicinity. It is important that to implement the proposed method there is no need to know the sharp minimum parameter, which is usually difficult to estimate in practice. To overcome this problem, the authors propose to use a step adjustment procedure similar to that previously proposed by B. T. Polyak. However, in this case, in comparison with the class of problems without constraints, it arises the problem of knowing the exact minimal value of the objective function. The paper describes the conditions for the inexactness of this information, which make it possible to preserve convergence with the rate of geometric progression in the vicinity of the set of minimum points of the problem. Two analogs of the concept of a sharp minimum for problems with inequality constraints are considered. In the first one, the problem of approximation to the exact solution arises only to a pre-selected level of accuracy, for this, it is considered the case when the minimal value of the objective function is unknown; instead, it is given some approximation of this value. We describe conditions on the inexact minimal value of the objective function, under which convergence to the vicinity of the desired set of points with a rate of geometric progression is still preserved. The second considered variant of the sharp minimum does not depend on the desired accuracy of the problem. For this, we propose a slightly different way of checking whether the step is productive, which allows us to guarantee the convergence of the method to the exact solution with the rate of geometric progression in the case of exact information. Convergence estimates are proved under conditions of weak convexity of the constraints and some restrictions on the choice of the initial point, and a corollary is formulated for the convex case when the need for an additional assumption on the choice of the initial point disappears. For both approaches, it has been proven that the distance from the current point to the set of solutions decreases with increasing number of iterations. This, in particular, makes it possible to limit the requirements for the properties of the used functions (Lipschitz-continuous, sharp minimum) only for a bounded set. Some computational experiments are performed, including for the truss topology design problem.

  9. Хусаинов Р.Р., Мамедов Ш.Н., Савин С.И., Климчик А.С.
    Поиск реализуемых энергоэффективных походок плоского пятизвенного двуногого робота с точечным контактом
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 155-170

    В статье рассматривается процесс поиска опорных траекторий движения плоского пятизвенного двуногого шагающего робота с точечным контактом. Для этого используются метод приведения динамики к низкоразмерному нулевому многообразию с помощью наложения виртуальных связей и алгоритмы нелинейной оптимизации для поиска параметров наложенных связей. Проведен анализ влияния степени полиномов Безье, аппроксимирующих виртуальные связи, а также условия непрерывности управляющих воздействий на энергоэффективность движения. Численные расчеты показали, что на практике достаточно рассматривать полиномы со степенями 5 или 6, так как дальнейшее увеличение степени приводит к увеличению вычислительных затрат, но не гарантирует уменьшение энергозатрат походки. Помимо этого, было установлено, что введение ограничений на непрерывность управляющих воздействий не приводит к существенному уменьшению энергоэффективности и способствует реализуемости походки на реальном роботе благодаря плавному изменению крутящих моментов в приводах. В работе показано, что для решения задачи поиска минимума целевой функции в виде энергозатрат при наличии большого количества ограничений целесообразно на первом этапе найти допустимые точки в пространстве параметров, а на втором этапе — осуществлять поиск локальных минимумов, стартуя с этих точек. Для первого этапа предложен алгоритм расчета начальных приближений искомых параметров, позволяющий сократить время поиска траекторий (в среднем до 3-4 секунд) по сравнению со случайным начальным приближением. Сравнение значений целевых функций на первом и на втором этапах показывает, что найденные на втором этапе локальные минимумы дают в среднем двукратный выигрыш по энергоэффективности в сравнении со случайно найденной на первом этапе допустимой точкой. При этом времязатраты на выполнение локальной оптимизации на втором этапе являются существенными.

    Khusainov R.R., Mamedov S.N., Savin S.I., Klimchik A.S.
    Searching for realizable energy-efficient gaits of planar five-link biped with a point contact
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 155-170

    In this paper, we discuss the procedure for finding nominal trajectories of the planar five-link bipedal robot with point contact. To this end we use a virtual constraints method that transforms robot’s dynamics to a lowdimensional zero manifold; we also use a nonlinear optimization algorithms to find virtual constraints parameters that minimize robot’s cost of transportation. We analyzed the effect of the degree of Bezier polynomials that approximate the virtual constraints and continuity of the torques on the cost of transportation. Based on numerical results we found that it is sufficient to consider polynomials with degrees between five and six, as further increase in the degree of polynomial results in increased computation time while it does not guarantee reduction of the cost of transportation. Moreover, it was shown that introduction of torque continuity constraints does not lead to significant increase of the objective function and makes the gait more implementable on a real robot.

    We propose a two step procedure for finding minimum of the considered optimization problem with objective function in the form of cost of transportation and with high number of constraints. During the first step we solve a feasibility problem: remove cost function (set it to zero) and search for feasible solution in the parameter space. During the second step we introduce the objective function and use the solution found in the first step as initial guess. For the first step we put forward an algorithm for finding initial guess that considerably reduced optimization time of the first step (down to 3–4 seconds) compared to random initialization. Comparison of the objective function of the solutions found during the first and second steps showed that on average during the second step objective function was reduced twofold, even though overall computation time increased significantly.

  10. Савин С.И., Ворочаева Л.Ю., Куренков В.В.
    Математическое моделирование тенсегрити-роботов с жесткими стержнями
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 821-830

    В работе рассматривается вопрос математического моделирования робототехнических структур на основе напряженно-связных конструкций, известных в англоязычных источниках как tensegrity structures (тенсегрити-структуры). Определяющим свойством таких конструкций является то, что образующие их элементы работают только на сжатие или растяжение, что позволяет использовать материалы и конструктивные решения для выполнения этих элементов, минимизирующие вес структуры, сохраняя ее прочность.

    Тенсегрити-структуры отличаются рядом свойств, важных для коллаборативной робототехники, задач разведывания и движения в недетерминированных средах: естественной податливостью, компактностью при транспортировке, малым весом при значительной удароустойчивости и жесткости. При этом открытыми остаются многие вопросы управления такими структурами, что в свою очередь связано со сложностью описания их динамики.

    В работе предложен подход к описанию и составлению динамических уравнений для таких конструкций, основанный на описании динамики второго порядка декартовых координат элементов структуры (стержней), динамики первого порядка для угловых скоростей стержней и динамики первого порядка для кватернионов, используемых для описания ориентации стержней. Предложен подход к численному решению составленных динамических уравнений. Предложенные методы реализованы в виде свободно распространяемого математического пакета с открытым исходным кодом.

    В работе продемонстрировано, как разработанный программный комплекс может использоваться для моделирования динамики и определения режимов работы тенсегрити-структур. Рассмотрен пример тенсегрити-структуры с тремя жесткими стержнями и девятью упругими элементами, работающими на растяжение (тросами), движущейся в невесомости. Показаны особенности динамики структуры в процессе достижения положения равновесия, определены области начальных значений параметров ориентации стержней, при которых структура работает в штатном режиме, и значения, при которых растяжение тросов превышает выбранное критическое значение или происходит провисание тросов. Полученные результаты могут непосредственно использоваться при анализе характера пассивных динамических движений роботов, основанных на трехзвенной тенсегрити-структуре, рассмотренный в работе; предложенные методы моделирования и разработанное программное обеспечение пригодны для моделирования значительного многообразия тенсегрити-роботов.

    Savin S.I., Vorochaeva L.I., Kurenkov V.V.
    Mathematical modelling of tensegrity robots with rigid rods
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 821-830

    In this paper, we address the mathematical modeling of robots based on tensegrity structures. The pivotal property of such structures is the forming elements working only for compression or tension, which allows the use of materials and structural solutions that minimize the weight of the structure while maintaining its strength.

    Tensegrity structures hold several properties important for collaborative robotics, exploration and motion tasks in non-deterministic environments: natural compliance, compactness for transportation, low weight with significant impact resistance and rigidity. The control of such structures remains an open research problem, which is associated with the complexity of describing the dynamics of such structures.

    We formulate an approach for describing the dynamics of such structures, based on second-order dynamics of the Cartesian coordinates of structure elements (rods), first-order dynamics for angular velocities of rods, and first-order dynamics for quaternions that are used to describe the orientation of rods. We propose a numerical method for solving these dynamic equations. The proposed methods are implemented in the form of a freely distributed mathematical package with open source code.

    Further, we show how the provided software package can be used for modeling the dynamics and determining the operating modes of tensegrity structures. We present an example of a tensegrity structure moving in zero gravity with three rigid rods and nine elastic elements working in tension (cables), showing the features of the dynamics of the structure in reaching the equilibrium position. The range of initial conditions for which the structure operates in the normal mode is determined. The results can be directly used to analyze the nature of passive dynamic movements of the robots based on a three-link tensegrity structure, considered in the paper; the proposed modeling methods and the developed software are suitable for modeling a significant variety of tensegrity robots.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.