Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Обзор текущего состояния квантовых технологий
Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 165-179Сегодня квантовые технологии могут получить новый виток развития, что, наверняка, даст возможность получить решения для многочисленных задач, которые ранее не поддавались решению в рамках традиционных парадигм и вычислительных моделей. Все человечество стоит у порога так называемой второй квантовой революции, и ее краткосрочные и отдаленные последствия затронут практически все сферы жизни глобального общества. Свое непосредственное развитие получат такие направления и отрасли науки и техники, как материаловедение, нанотехнология, фармакология и биохимия вообще, моделирование хаотичных динамических процессов (ядерные взрывы, турбулентные потоки, погода и долгосрочные климатические явления) и т. д., а также решение любых задач, которые сводятся к перемножению матриц больших размеров (в частности, моделирование квантовых систем). Однако вместе с необычайными возможностями квантовые технологии несут с собой и определенные риски и угрозы, в частности слом всех информационных систем, основанных на современных достижениях криптографии, что повлечет за собой практически полное разрушение секретности, глобальный финансовый кризис из-за разрушения банковской сферы и компрометации всех каналов связи. Даже несмотря на то, что уже сегодня разрабатываются методы так называемой постквантовой криптографии, некоторые риски еще необходимо осознать, так как не все долгосрочные последствия могут быть просчитаны. Вместе с тем ко всему перечисленному надо быть готовым, в том числе при помощи подготовки специалистов, работающих в области квантовых технологий и понимающих все их аспекты, новые возможности, риски и угрозы. В связи с этим в настоящей статье приводится краткое описание текущего состояния квантовых технологий, а именно квантовой сенсорики, передачи информации при помощи квантовых протоколов, универсального квантового компьютера (аппаратное обеспечение) и квантовых вычислений, основанных на квантовых алгоритмов (программное обеспечение). Для всего перечисленного приводятся прогнозы развития в части воздействия на различные сферы человеческой цивилизации.
Ключевые слова: квантовые технологии, квантовые сенсоры, квантовая передача информации, универсальный квантовый компьютер, квантовые вычисления, квантовые алгоритмы.
Review of Modern State of Quantum Technologies
Computer Research and Modeling, 2018, v. 10, no. 2, pp. 165-179Просмотров за год: 56.At present modern quantum technologies can get a new twist of development, which will certainly give an opportunity to obtain solutions for numerous problems that previously could not be solved in the framework of “traditional” paradigms and computational models. All mankind stands at the threshold of the so-called “second quantum revolution”, and its short-term and long-term consequences will affect virtually all spheres of life of a global society. Such directions and branches of science and technology as materials science, nanotechnology, pharmacology and biochemistry in general, modeling of chaotic dynamic processes (nuclear explosions, turbulent flows, weather and long-term climatic phenomena), etc. will be directly developed, as well as the solution of any problems, which reduce to the multiplication of matrices of large dimensions (in particular, the modeling of quantum systems). However, along with extraordinary opportunities, quantum technologies carry with them certain risks and threats, in particular, the scrapping of all information systems based on modern achievements in cryptography, which will entail almost complete destruction of secrecy, the global financial crisis due to the destruction of the banking sector and compromise of all communication channels. Even in spite of the fact that methods of so-called “post-quantum” cryptography are already being developed today, some risks still need to be realized, since not all long-term consequences can be calculated. At the same time, one should be prepared to all of the above, including by training specialists working in the field of quantum technologies and understanding all their aspects, new opportunities, risks and threats. In this connection, this article briefly describes the current state of quantum technologies, namely, quantum sensorics, information transfer using quantum protocols, a universal quantum computer (hardware), and quantum computations based on quantum algorithms (software). For all of the above, forecasts are given for the development of the impact on various areas of human civilization.
-
Современные методы математического моделирования кровотока c помощью осредненных моделей
Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 581-604Изучение физиологических и патофизиологических процессов, связанных с системой кровообращения, является на сегодняшний день актуальной темой многих исследований. В данной работе рассматривается ряд подходов к математическому моделированию кровотока, основанных на пространственном осреднении и/или использующих стационарное приближение. Обсуждаются допущения и предположения, ограничивающие область применения моделей такого рода. Приводятся наиболее распространенные математические постановки задач и кратко описываются методы их численного решения. В первой части обсуждаются модели, основанные на полном пространственном осреднении и/или использующие стационарное приближение. Один из наиболее распространенных на сегодняшний день подходов состоит в проведении аналогий между течением вязкой несжимаемой жидкости в эластичных трубках и электрическим током в цепи. Такие модели используются не только сами по себе, но и как способ постановки граничных условий в моделях, учитывающих одномерную или трехмерную пространственную зависимость переменных. Динамические, полностью осредненные по пространству модели позволяют описывать динамику кровотока на достаточно больших временных интервалах, равных длительности десятков сердечных циклов и более. Далее рассмотрены стационарные модели основанные как на полностью осредненном, так и на двухмерном подходе. Такие модели могут быть использованы для моделирования кровотока в микроциркуляторном русле. Во второй части обсуждаются модели, основанные на одномерном осреднении параметров кровотока. Преимущество данного подхода также состоит в невысоких, по сравнению с трехмерным моделированием, требованиях к вычислительным ресурсам и возможности охвата всех достаточно крупных кровеносных сосудов в организме. Модели данного типа позволяют рассчитывать параметры кровотока в каждом сосуде сосудистой сети, включенной в модель. Структура и параметры такой сети могут быть заданы как на основе данных литературы, так и с помощью методов сегментации медицинских данных. Основными и весьма существенными предположениями при выводе одномерных уравнений из уравнений Навье – Стокса с помощью асимптотического анализа или их интегрирования по объему являются радиальная симметрия течения и постоянство формы профиля скорости в поперечном сечении. Существующие в настоящее время работы, посвященные валидации одномерных моделей, их сравнению между собой и с данными клинических исследований, позволяют говорить об успешности данного подхода и подтверждают возможность его использования в медицинской практике. Одномерные модели позволяют описывать такие динамические явления, как распространение пульсовой волны и звуки Короткова. В этом приближении могут быть учтены такие факторы, как действие на кровоток силы тяжести, действие на стенки сосудов силы сжатия мышц, регуляторные и ауторегуляторные эффекты.
Modern methods of mathematical modeling of blood flow using reduced order methods
Computer Research and Modeling, 2018, v. 10, no. 5, pp. 581-604Просмотров за год: 62. Цитирований: 2 (РИНЦ).The study of the physiological and pathophysiological processes in the cardiovascular system is one of the important contemporary issues, which is addressed in many works. In this work, several approaches to the mathematical modelling of the blood flow are considered. They are based on the spatial order reduction and/or use a steady-state approach. Attention is paid to the discussion of the assumptions and suggestions, which are limiting the scope of such models. Some typical mathematical formulations are considered together with the brief review of their numerical implementation. In the first part, we discuss the models, which are based on the full spatial order reduction and/or use a steady-state approach. One of the most popular approaches exploits the analogy between the flow of the viscous fluid in the elastic tubes and the current in the electrical circuit. Such models can be used as an individual tool. They also used for the formulation of the boundary conditions in the models using one dimensional (1D) and three dimensional (3D) spatial coordinates. The use of the dynamical compartment models allows describing haemodynamics over an extended period (by order of tens of cardiac cycles and more). Then, the steady-state models are considered. They may use either total spatial reduction or two dimensional (2D) spatial coordinates. This approach is used for simulation the blood flow in the region of microcirculation. In the second part, we discuss the models, which are based on the spatial order reduction to the 1D coordinate. The models of this type require relatively small computational power relative to the 3D models. Within the scope of this approach, it is also possible to include all large vessels of the organism. The 1D models allow simulation of the haemodynamic parameters in every vessel, which is included in the model network. The structure and the parameters of such a network can be set according to the literature data. It also exists methods of medical data segmentation. The 1D models may be derived from the 3D Navier – Stokes equations either by asymptotic analysis or by integrating them over a volume. The major assumptions are symmetric flow and constant shape of the velocity profile over a cross-section. These assumptions are somewhat restrictive and arguable. Some of the current works paying attention to the 1D model’s validation, to the comparing different 1D models and the comparing 1D models with clinical data. The obtained results reveal acceptable accuracy. It allows concluding, that the 1D approach can be used in medical applications. 1D models allow describing several dynamical processes, such as pulse wave propagation, Korotkov’s tones. Some physiological conditions may be included in the 1D models: gravity force, muscles contraction force, regulation and autoregulation.
-
Разработка сетевых вычислительных моделей для исследования нелинейных волновых процессов на графах
Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 777-814В различных приложениях возникают задачи, моделируемые уравнениями в частных производных на графах (сетях, деревьях). Для исследования данных проблем и возникающих различных экстремальных ситуаций, для задач проектирования и оптимизации сетей различных типов в данной работе построена вычислительная модель, основанная на решении соответствующих краевых задач для нелинейных уравнений в частных производных гиперболического типа на графах (сетях, деревьях). В качестве приложений были выбраны три различные задачи, решаемые в рамках общего подхода сетевых вычислительных моделей. Первая — это моделирование движения транспортных потоков. При решении данной задачи использовался макроскопический подход, при котором транспортный поток описывается нелинейной системой гиперболических уравнений второго порядка. Проведенные расчеты и полученные результаты показали, что разработанная в рамках предложенного подхода модель хорошо воспроизводит реальную ситуацию на различных участках транспортной сети г. Москвы на значительных временных интервалах, а также может быть использована для выбора наиболее оптимальной стратегии организации дорожного движения в городе. Вторая — моделирование потоков данных в компьютерных сетях. В этой задаче потоки данных различных соединений в пакетной сети передачи данных моделировались в виде несмешивающихся потоков сплошной среды. Предложены концептуальная и математическая модели сети. Проведено численное моделирование в сравнении с системой имитационного моделирования сети NS-2. Полученные результаты показали, что в сравнении с пакетной моделью NS-2 разработанная нами потоковая модель демонстрирует значительную экономию вычислительных ресурсов, обеспечивая при этом хорошую степень подобия, и позволяет моделировать поведение сложных глобально распределенных IP-сетей передачи данных. Третья — моделирование распространения газовых примесей в вентиляционных сетях. Была разработана вычислительная математическая модель распространения мелкодисперсных или газовых примесей в вентиляционных сетях с использованием уравнений газовой динамики путем численного сопряжения областей разной размерности. Проведенные расчеты показали, что модель с хорошей точностью позволяет определять распределение газодинамических параметров в трубопроводной сети и решать задачи динамического управления вентиляцией.
Ключевые слова: уравнения в частных производных, графы, вычислительные модели, уравнения гиперболического типа, численное моделирование, граничные условия.
Development of network computational models for the study of nonlinear wave processes on graphs
Computer Research and Modeling, 2019, v. 11, no. 5, pp. 777-814In various applications arise problems modeled by nonlinear partial differential equations on graphs (networks, trees). In order to study such problems and various extreme situations arose in the problems of designing and optimizing networks developed the computational model based on solving the corresponding boundary problems for partial differential equations of hyperbolic type on graphs (networks, trees). As applications, three different problems were chosen solved in the framework of the general approach of network computational models. The first was modeling of traffic flow. In solving this problem, a macroscopic approach was used in which the transport flow is described by a nonlinear system of second-order hyperbolic equations. The results of numerical simulations showed that the model developed as part of the proposed approach well reproduces the real situation various sections of the Moscow transport network on significant time intervals and can also be used to select the most optimal traffic management strategy in the city. The second was modeling of data flows in computer networks. In this problem data flows of various connections in packet data network were simulated as some continuous medium flows. Conceptual and mathematical network models are proposed. The numerical simulation was carried out in comparison with the NS-2 network simulation system. The results showed that in comparison with the NS-2 packet model the developed streaming model demonstrates significant savings in computing resources while ensuring a good level of similarity and allows us to simulate the behavior of complex globally distributed IP networks. The third was simulation of the distribution of gas impurities in ventilation networks. It was developed the computational mathematical model for the propagation of finely dispersed or gas impurities in ventilation networks using the gas dynamics equations by numerical linking of regions of different sizes. The calculations shown that the model with good accuracy allows to determine the distribution of gas-dynamic parameters in the pipeline network and solve the problems of dynamic ventilation management.
-
Моделирование пространственного сценария перехода к хаосу через разрушение тора в задаче с концентрационно-зависимой диффузией
Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 9-31Универсальные сценарии перехода к хаосу в динамических системах к настоящему моменту хорошо изучены. К типичным сценариям относятся каскад бифуркаций удвоения периода (сценарий Фейген-баума), разрушение тора малой размерности (сценарий Рюэля–Такенса) и переход через перемежаемость (сценарий Помо–Манневилля). В более сложных пространственно-распределенных динамических системах нарастающая с изменением параметра сложность поведения по времени тесно переплетается с формированием пространственных структур. Однако вопрос о том, могут ли в каком-то сценарии пространственная и временная оси полностью поменяться ролями, до сих пор остается открытым. В данной работе впервые предлагается математическая модель конвекции–реакции–диффузии, в рамках которой реализуется пространственный аналог перехода к хаосу через разрушение квазипериодического режима в рамках сценария Рюэля–Такенса. Исследуемая физическая система представляет собой два водных раствора кислоты (A) и основания (B), в начальный момент времени разделенных по пространству и помещенных в вертикальную ячейку Хеле–Шоу, находящуюся в статическом поле тяжести. При приведении растворов в контакт начинается фронтальная реакция нейтрализации второго порядка: A + B $\to$ C, которая сопровождается выделением соли (С). Процесс характеризуется сильной зависимостью коэффициентов диффузии реагентов от их концентрации, что приводит к возникновению двух локальных зон пониженной плотности, в которых независимо друг от друга возникают хемоконвективные движения жидкости. Слои, в которых развивается конвекция, все время остаются разделенными прослойкой неподвижной жидкости, но они могут влиять друг на друга посредством диффузии реагентов через прослойку. Формирующаяся хемо-конвективная структура представляет собой модулированную стоячую волну, постепенно разрушающуюся со временем, повторяя последовательность бифуркаций сценария разрушения двумерного тора. Показано, что в ходе эволюции системы пространственная ось, направленная вдоль фронта реакции, выполняет роль времени, а само время играет роль управляющего параметра.
Ключевые слова: пространственный аналог сценария перехода к хаосу, разрушение тора, хемокон-векция, реакция нейтрализации, нелинейная диффузия, смешивающиеся жидкости.
Modeling the spatial scenario of the transition to chaos via torus breakup in the problem with concentration-dependent diffusion
Computer Research and Modeling, 2020, v. 12, no. 1, pp. 9-31In the last decades, universal scenarios of the transition to chaos in dynamic systems have been well studied. The scenario of the transition to chaos is defined as a sequence of bifurcations that occur in the system under the variation one of the governing parameters and lead to a qualitative change in dynamics, starting from the regular mode and ending with chaotic behavior. Typical scenarios include a cascade of period doubling bifurcations (Feigenbaum scenario), the breakup of a low-dimensional torus (Ruelle–Takens scenario), and the transition to chaos through the intermittency (Pomeau–Manneville scenario). In more complicated spatially distributed dynamic systems, the complexity of dynamic behavior growing with a parameter change is closely intertwined with the formation of spatial structures. However, the question of whether the spatial and temporal axes could completely exchange roles in some scenario still remains open. In this paper, for the first time, we propose a mathematical model of convection–diffusion–reaction, in which a spatial transition to chaos through the breakup of the quasi–periodic regime is realized in the framework of the Ruelle–Takens scenario. The physical system under consideration consists of two aqueous solutions of acid (A) and base (B), initially separated in space and placed in a vertically oriented Hele–Shaw cell subject to the gravity field. When the solutions are brought into contact, the frontal neutralization reaction of the second order A + B $\to$ C begins, which is accompanied by the production of salt (C). The process is characterized by a strong dependence of the diffusion coefficients of the reagents on their concentration, which leads to the appearance of two local zones of reduced density, in which chemoconvective fluid motions develop independently. Although the layers, in which convection develops, all the time remain separated by the interlayer of motionless fluid, they can influence each other via a diffusion of reagents through this interlayer. The emerging chemoconvective structure is the modulated standing wave that gradually breaks down over time, repeating the sequence of the bifurcation chain of the Ruelle–Takens scenario. We show that during the evolution of the system one of the spatial axes, directed along the reaction front, plays the role of time, and time itself starts to play the role of a control parameter.
-
Глобальные бифуркации предельных циклов полиномиальной системы Эйлера–Лагранжа–Льенара
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 693-705В данной статье, используя наш бифуркационно-геометрический подход, мы изучаем глобальную динамику и решаем проблему о максимальном числе и распределении предельных циклов (автоколебательных режимов, соответствующих состояниям динамического равновесия) в планарной полиномиальной механической системе типа Эйлера–Лагранжа–Льенара. Такие системы используются также для моделирования электротехнических, экологических, биомедицинских и других систем, что значительно облегчает исследование соответствующих реальных процессов и систем со сложной внутренней динамикой. Они используется, в частности, в механических системах с демпфированием и жесткостью. Существует ряд примеров технических систем, которые описываются с помощью квадратичного демпфирования в динамических моделях второго порядка. В робототехнике, например, квадратичное демпфирование появляется при управлении с прямой связью и в нелинейных устройствах, таких как приводы с переменным импедансом (сопротивлением). Приводы с переменным сопротивлением представляют особый интерес для совместной робототехники. Для исследования характера и расположения особых точек в фазовой плоскости полиномиальной системы Эйлера–Лагранжа–Льенара используется разработанный нами метод, смысл которого состоит в том, чтобы получить простейшую (хорошо известную) систему путем обращения в нуль некоторых параметров (обычно параметров, поворачивающих поле) исходной системы, а затем последовательно вводить эти параметры, изучая динамику особых точек в фазовой плоскости. Для исследования особых точек системы мы используем классические теоремы Пуанкаре об индексе, а также наш оригинальный геометрический подход, основанный на применении метода двух изоклин Еругина, что особенно эффективно при исследовании бесконечно удаленных особых точек. Используя полученную информацию об особых точках и применяя канонические системы с параметрами, поворачивающими векторное поле, а также используя геометрические свойства спиралей, заполняющих внутренние и внешние области предельных циклов, и применяя наш геометрический подход к качественному анализу, мы изучаем бифуркации предельных циклов рассматриваемой системы.
Ключевые слова: уравнение Эйлера–Лагранжа–Льенара, механическая система, планарная полиномиальная динамическая система, бифуркация, параметр поворота поля, особая точка, предельный цикл.
Global limit cycle bifurcations of a polynomial Euler–Lagrange–Liénard system
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 693-705In this paper, using our bifurcation-geometric approach, we study global dynamics and solve the problem of the maximum number and distribution of limit cycles (self-oscillating regimes corresponding to states of dynamical equilibrium) in a planar polynomial mechanical system of the Euler–Lagrange–Liйnard type. Such systems are also used to model electrical, ecological, biomedical and other systems, which greatly facilitates the study of the corresponding real processes and systems with complex internal dynamics. They are used, in particular, in mechanical systems with damping and stiffness. There are a number of examples of technical systems that are described using quadratic damping in second-order dynamical models. In robotics, for example, quadratic damping appears in direct-coupled control and in nonlinear devices, such as variable impedance (resistance) actuators. Variable impedance actuators are of particular interest to collaborative robotics. To study the character and location of singular points in the phase plane of the Euler–Lagrange–Liйnard polynomial system, we use our method the meaning of which is to obtain the simplest (well-known) system by vanishing some parameters (usually, field rotation parameters) of the original system and then to enter sequentially these parameters studying the dynamics of singular points in the phase plane. To study the singular points of the system, we use the classical Poincarй index theorems, as well as our original geometric approach based on the application of the Erugin twoisocline method which is especially effective in the study of infinite singularities. Using the obtained information on the singular points and applying canonical systems with field rotation parameters, as well as using the geometric properties of the spirals filling the internal and external regions of the limit cycles and applying our geometric approach to qualitative analysis, we study limit cycle bifurcations of the system under consideration.
-
Стационарные состояния и бифуркации в одномерной активной среде осцилляторов
Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 491-512В предлагаемой статье приводятся результаты аналитического и компьютерного исследования коллективных динамических свойств цепочки автоколебательных систем (условно — осцилляторов). Предполагается, что связи отдельных элементов цепочки являются невзаимными, однонаправленными. Точнее, предполагается, что каждый элемент цепочки находится под воздействием предыдущего, в то время как обратная реакция отсутствует (физически несущественна). В этом состоит главная особенность цепочки. Данную систему можно интерпретировать как активную дискретную среду с однонаправленным переносом, в частности переносом вещества. Подобные цепочки могут являться математическими моделями реальных систем с решеточной структурой, имеющих место в самых различных областях естествознания и техники: в физике, химии, биологии, радиотехнике, экономике и др. Также они могут быть моделями технологических и вычислительных процессов. В качестве элементов решетки выбраны нелинейные автоколебательные системы (условно — осцилляторы) с широким спектром потенциально возможных индивидуальных автоколебаний: от периодических до хаотических. Это позволяет исследовать различные динамические режимы цепочки от регулярных до хаотических, меняя параметры элементов и не меняя природу самих элементов. Совместное применение качественных методов теории динамических систем и качественно-численных методов позволяет получить обозримую картину всевозможных динамических режимов цепочки. Исследуются условия существования и устойчивости пространственно однородных динамических режимов (детерминированных и хаотических) цепочки. Аналитические результаты иллюстрированы численным экспериментом. Исследуются динамические режимы цепочки при возмущениях параметров на ее границе. Показывается возможность управления динамическими режимами цепочки путем включения необходимого возмущения на границе. Рассматриваются различные случаи динамики цепочек, составленных из неоднородных (различных по своим параметрам) элементов. Аналитически и численно исследуется глобальная (всех осцилляторов цепочки) хаотическая синхронизация.
Ключевые слова: динамическая система, решетка, бифуркации, осциллятор, фазовое пространство, динамический хаос, синхронизация.
Stationary states and bifurcations in a one-dimensional active medium of oscillators
Computer Research and Modeling, 2023, v. 15, no. 3, pp. 491-512This article presents the results of an analytical and computer study of the collective dynamic properties of a chain of self-oscillating systems (conditionally — oscillators). It is assumed that the couplings of individual elements of the chain are non-reciprocal, unidirectional. More precisely, it is assumed that each element of the chain is under the influence of the previous one, while the reverse reaction is absent (physically insignificant). This is the main feature of the chain. This system can be interpreted as an active discrete medium with unidirectional transfer, in particular, the transfer of a matter. Such chains can represent mathematical models of real systems having a lattice structure that occur in various fields of natural science and technology: physics, chemistry, biology, radio engineering, economics, etc. They can also represent models of technological and computational processes. Nonlinear self-oscillating systems (conditionally, oscillators) with a wide “spectrum” of potentially possible individual self-oscillations, from periodic to chaotic, were chosen as the “elements” of the lattice. This allows one to explore various dynamic modes of the chain from regular to chaotic, changing the parameters of the elements and not changing the nature of the elements themselves. The joint application of qualitative methods of the theory of dynamical systems and qualitative-numerical methods allows one to obtain a clear picture of all possible dynamic regimes of the chain. The conditions for the existence and stability of spatially-homogeneous dynamic regimes (deterministic and chaotic) of the chain are studied. The analytical results are illustrated by a numerical experiment. The dynamical regimes of the chain are studied under perturbations of parameters at its boundary. The possibility of controlling the dynamic regimes of the chain by turning on the necessary perturbation at the boundary is shown. Various cases of the dynamics of chains comprised of inhomogeneous (different in their parameters) elements are considered. The global chaotic synchronization (of all oscillators in the chain) is studied analytically and numerically.
Keywords: dynamical system, lattice, bifurcations, oscillator, phase space, dynamical chaos, synchronization. -
Формирование оптимального управления нелинейным динамическим объектом на основе модели Такаги–Сугено
Компьютерные исследования и моделирование, 2015, т. 7, № 1, с. 51-59В работе рассмотрен алгоритм нечеткой системы управления существенно нелинейным динамическим объектом. Для решения нелинейной задачи оптимального управления предлагается использовать линейно-квадратичное регулирование (LQR — linear quadratic regulator) с моделью Такаги–Сугено (Takagi–Sugeno). Алгоритм может быть использован для проектирования систем оптимального управления детерминированными нелинейными объектами. Предложено использование алгоритма функционирования оптимальной системы управления для управления вращательным движением летательного аппарата.
Ключевые слова: система управления, вращательное движение твердого тела, модель Такаги–Сугено, нечеткая система управления.
Formation of optimal control of nonlinear dynamic object based on Takagi–Sugeno model
Computer Research and Modeling, 2015, v. 7, no. 1, pp. 51-59Просмотров за год: 2.The algorithm of fuzzy control system essentially nonlinear dynamic object is considered in this article. For solving nonlinear optimal control problem is proposed to use the method of linear quadratic regulation (LQR) with fuzzy Takagi–Sugeno model. The algorithm can be used for the design of deterministic optimal control of nonlinear objects. The algorithm of optimal control for controlling the rotational motion of a space vehicle is proposed.
-
Механизм образования осциллонов — уединенных колебательных структур
Компьютерные исследования и моделирование, 2015, т. 7, № 6, с. 1177-1184Предложен формальный модельный механизм формирования осциллонов, которые были обнаружены во множестве физических систем, а также в химической реакции Белоусова–Жаботинского, протекающей в обращенной масляной микроэмульсии аэрозоля ОТ. В предложенном механизме возникновение осциллонов происходит в результате взаимодействия двух подсистем. В первой подсистеме при подходящем наборе параметров в результате жесткого локального возбуждения возможно образование уединенных стационарных структур, которые определяют пространственное распределение параметра второй подсистемы, изменение которого вызывают в ней локальные осцилляции.
The mechanism of formation of oscillons — localized oscillatory structures
Computer Research and Modeling, 2015, v. 7, no. 6, pp. 1177-1184Просмотров за год: 6. Цитирований: 1 (РИНЦ).A formal model mechanism of oscillon formation is proposed. These structures were found in a variety of physical systems and a chemical Belousov–Jabotinsky reaction proceeding in an aerosol OT water-inoil microemulsion. Via the proposed mechanism oscillons occur as a result of interaction of two subsystems. In the first subsystem for a proper set of parameters solitary stationary structures may arise as a result of hard local excitation. These structures influence spatial distribution of the second subsystem parameter that leads to local oscillations in the subsystem.
-
Классификация динамических режимов переключения намагниченности в трехслойной ферромагнитной структуре в зависимости от спин-поляризованного тока инжекции и внешнего магнитного поля. II. Перпендикулярная анизотропия
Компьютерные исследования и моделирование, 2016, т. 8, № 5, с. 755-764В приближении однородной намагниченности построена математическая модель трехслойной ячейки памяти MRAM c осью анизотропии, расположенной перпендикулярно запоминающему ферромагнитному слою ячейки (перпендикулярная анизотропия). Предполагается, что первоначально намагниченность свободного слоя ячейки ориентирована вдоль оси анизотропии и соответствует состоянию «нуль». Одновременное мгновенное включение спин-поляризованного тока и магнитного поля воздействует на намагниченность свободного слоя и может перевести ее в противоположное положение, соответствующее состоянию «единица». Математическое описание эффекта основано на классическом векторном уравнении Ландау–Лифшица с диссипативным членом в форме Гильберта. В нашей модели учтены взаимодействия намагниченности с внешним магнитным полем и эффективными полями анизотропии и размагничивания, а также с током инжекции в форме Слончевского–Берже. Выведена система обыкновенных дифференциальных уравнений, описывающая динамику намагниченности в трехслойной вентильной структуре Co/Cu/Co в зависимости от управляющих параметров: величины тока инжекции и внешнего магнитного поля, параллельного оси анизотропии магнитных слоев. Показано, что при любых токах и полях система имеет два основных состояния равновесия, расположенных на оси, совпадающей с осью анизотропии. Установлено, что в данной системе, в отличие от системы с продольной анизотропией, дополнительные состояния равновесия отсутствуют. Проведен анализ устойчивости основных состояний равновесия по первому приближению. Построены бифуркационные диаграммы, характеризующие типы динамики вектора намагниченности свободного слоя. Проведена классификация фазовых портретов на единичной сфере в зависимости от управляющих параметров (тока и поля). Изучены особенности динамики вектора намагниченности в каждой из характерных областей бифуркационной диаграммы и численно, методом Рунге–Кутты, построены траектории переключения. Найдены комбинации управляющих параметров, при которых переключение невозможно. Найдены области существования устойчивых и неустойчивых предельных циклов системы. Аналитически определены значения пороговых токов переключения в зависимости от внешнего магнитного поля. Проведено сравнение значений порогового тока в моделях с продольной и перпендикулярной анизотропией при нулевом магнитном поле и показано, что в модели с перпендикулярной анизотропией ток переключения почти на порядок ниже, чем в модели с продольной анизотропией.
Ключевые слова: память MRAM, одноосная анизотропия, намагниченность, свободный слой, закрепленный слой, уравнение Ландау–Лифшица–Гильберта, переключение намагниченности.
Classification of dynamical switching regimes in a three-layered ferromagnetic nanopillar governed by spin-polarized injection current and external magnetic field. II. Perpendicular anisotropy
Computer Research and Modeling, 2016, v. 8, no. 5, pp. 755-764Просмотров за год: 4. Цитирований: 1 (РИНЦ).The mathematical model of a three-layered Co/Cu/Co nanopillar for MRAM cell with one fixed and one free layer was investigated in the approximation of uniformly distributed magnetization. The anisotropy axis is perpendicular to the layers (so-called perpendicular anisotropy). Initially the magnetization of the free layer is oriented along the anisotropy axis in the position accepted to be “zero”. Simultaneous magnetic field and spinpolarized current engaging can reorient the magnetization to another position which in this context can be accepted as “one”. The mathematical description of the effect is based on the classical vector Landau–Lifshits equation with the dissipative term in the Gilbert form. In our model we took into account the interactions of the magnetization with an external magnetic field and such effective magnetic fields as an anisotropy and demagnetization ones. The influence of the spin-polarized injection current is taken into account in the form of Sloczewski–Berger term. The model was reduced to the set of three ordinary differential equations with the first integral. It was shown that at any current and field the dynamical system has two main equilibrium states on the axis coincident with anisotropy axis. It was ascertained that in contrast with the longitudinal-anisotropy model, in the model with perpendicular anisotropy there are no other equilibrium states. The stability analysis of the main equilibrium states was performed. The bifurcation diagrams characterizing the magnetization dynamics at different values of the control parameters were built. The classification of the phase portraits on the unit sphere was performed. The features of the dynamics at different values of the parameters were studied and the conditions of the magnetization reorientation were determined. The trajectories of magnetization switching were calculated numerically using the Runge–Kutta method. The parameter values at which limit cycles exist were determined. The threshold values for the switching current were found analytically. The threshold values for the structures with longitudinal and perpendicular anisotropy were compared. It was established that in the structure with the perpendicular anisotropy at zero field the switching current is an order lower than in the structure with the longitudinal one.
-
Процедура вывода явных, неявных и симметричных симплектических схем для численного решения гамильтоновых систем уравнений
Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 861-871При моделировании методами классической молекулярной динамики поведения системы частиц используются уравнения движения в ньютоновской и гамильтоновой формулировке. При использовании уравнений Ньютона для получения координат и скоростей частиц системы, состоящей из $N$ частиц, требуется на каждом временном шаге в трехмерном случае решить $3N$ обыкновенных дифференциальных уравнений второго порядка. Традиционно для решения уравнений движения молекулярной динамики в ньютоновской формулировке используются численные схемы метода Верле. Для сохранения устойчивости численных схем Верле на достаточно больших интервалах времени приходится уменьшать шаг интегрирования. Это приводит к существенному увеличению объема вычислений. В большинстве современных пакетов программ молекулярной динамики для численного интегрирования уравнений движения используют схемы метода Верле с контролем сохранения гамильтониана (энергии системы) по времени. Для уменьшения времени вычислений при молекулярно-динамических расчетах можно использовать два дополняющих друг друга подхода. Первый основан на совершенствовании и программной оптимизации существующих пакетов программ молекулярной динамики с использованием векторизации, распараллеливания, спецпроцессоров. Второй подход основан на разработке эффективных методов численного интегрирования уравнений движения. В работе предложена процедура построения явных, неявных и симметричных симплектических численных схем с заданной точностью аппроксимации относительно шага интегрирования для решения уравнений движения молекулярной динамики в гамильтоновой форме. В основе подхода для построения предложенной в работе процедуры лежат следующие положения: гамильтонова формулировка уравнений движения, использование разложения точного решения в ряд Тейлора, использование для вывода численных схем аппарата производящих функций для сохранения геометрических свойств точного решения. Численные эксперименты показали, что полученная в работе симметричная симплектическая схема третьего порядка точности сохраняет в приближенном решении основные свойства точного решения, является более устойчивой по шагу аппроксимации и более точно сохраняет гамильтониан системы на большом интервале интегрирования, чем численные схемы метода Верле второго порядка.
Ключевые слова: гамильтоновы системы уравнений, симплектические разностные схемы, производящие функции, молекулярная динамика.
Procedure for constructing of explicit, implicit and symmetric simplectic schemes for numerical solving of Hamiltonian systems of equations
Computer Research and Modeling, 2016, v. 8, no. 6, pp. 861-871Просмотров за год: 11.Equations of motion in Newtonian and Hamiltonian forms are used for classical molecular dynamics simulation of particle system time evolution. When Newton equations of motion are used for finding of particle coordinates and velocities in $N$-particle system it takes to solve $3N$ ordinary differential equations of second order at every time step. Traditionally numerical schemes of Verlet method are used for solving Newtonian equations of motion of molecular dynamics. A step of integration is necessary to decrease for Verlet numerical schemes steadiness conservation on sufficiently large time intervals. It leads to a significant increase of the volume of calculations. Numerical schemes of Verlet method with Hamiltonian conservation control (the energy of the system) at every time moment are used in the most software packages of molecular dynamics for numerical integration of equations of motion. It can be used two complement each other approaches to decrease of computational time in molecular dynamics calculations. The first of these approaches is based on enhancement and software optimization of existing software packages of molecular dynamics by using of vectorization, parallelization and special processor construction. The second one is based on the elaboration of efficient methods for numerical integration for equations of motion. A procedure for constructing of explicit, implicit and symmetric symplectic numerical schemes with given approximation accuracy in relation to integration step for solving of molecular dynamic equations of motion in Hamiltonian form is proposed in this work. The approach for construction of proposed in this work procedure is based on the following points: Hamiltonian formulation of equations of motion; usage of Taylor expansion of exact solution; usage of generating functions, for geometrical properties of exact solution conservation, in derivation of numerical schemes. Numerical experiments show that obtained in this work symmetric symplectic third-order accuracy scheme conserves basic properties of the exact solution in the approximate solution. It is more stable for approximation step and conserves Hamiltonian of the system with more accuracy at a large integration interval then second order Verlet numerical schemes.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"