Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'computational model':
Найдено статей: 260
  1. В статье рассматривается модель антропоморфного механизма типа экзоскелета со звеньями переменной длины. Комплексно рассмотрены четыре модели звеньев переменной длины: модель звена экзоскелета переменной длины с упругим элементом и абсолютно твердым весомым стержнем, модель телескопического звена; модель звена с массами в шарнирах-суставах и между ними, модель звена с произвольным количеством масс. Составлены дифференциальные уравнения движения в форме уравнений Лагранжа второго рода. На основе проведенного анализа дифференциальных уравнений движения для многозвенных стержневых механических систем типа экзосклета выявлена их структура, позволившая представить их в векторно-матричном виде. Впервые установлены общие закономерности построения матриц и получены обобщения выражений для элементов матриц в двухмерном случае. Приводятся новые рекуррентный и матричный методы составления дифференциальных уравнений движения. Предлагается единый подход к построению дифференциальных уравнений движения экзоскелета на основе разработанных рекуррентного и матричного методов записи дифференциальных уравнений движения экзоскелета. Проведено сопоставление времени составления дифференциальных уравнений движения предложенными методами, в сравнении с уравнениями Лагранжа второго рода, в системе компьютерной математики Mathematica. Осуществлено аналитическое исследование модели экзоскелета. Установлено, что для механизмов с $n$ подвижными звеньями решение задачи Коши для систем дифференциальных уравнений движения при любых начальных условиях существует, единственно и неограниченно продолжаемо. Управление экзоскелетом осуществляется с помощью крутящих моментов, расположенных в шарнирах-суставах в местах соединения звеньев и моделирующих управляющие воздействия. Выполнено численное исследование модели экзоскелета, проведено сопоставление результатов расчетов для экзоскелетов с различными моделями звеньев. Для численного исследования использованы эмпирические данные о человеке и его движениях. Установлено, что при выборе конструкции экзоскелета модель с сосредоточенными массами является предпочтительной, нежели модель с абсолютно твердым весомым стержнем, так как экзоскелет, обеспечивающий комфортабельные передвижения человека в нем, должен повторять свойства опорно-двигательного аппарата.

    The article discusses the model of the anthropomorphic type of mechanism of the exoskeleton with links of variable length. Four models of parts of variable length are considered comprehensively: the model link of the exoskeleton of variable length with a resilient member and a rigid strong core; the model of the telescopic link; the model link with the masses in the hinge-joint between them; the link model with an arbitrary number of masses. The differential equations of motion in the form of Lagrange equations of the second kind are made. On the basis of analysis of differential equations of motion for multi-link rod of a mechanical system type, exoskeleton revealed their structure, which allowed us to represent them in vector-matrix form. The General pattern of building matrices are established for the first time and the generalization of the expressions for elements of matrices in two-dimensional case are obtained. New recursive and matrix methods of composing of differential equations of motion are given. A unified approach to constructing differential equations of motion of the exoskeleton based on the developed recursive and matrix methods write differential equations of motion of the proposed exoskeleton. Comparison of the time of writing the differential equations of motion proposed methods, in comparison with the Lagrange equations of the second kind, in the system of computer mathematics Mathematica conducted. An analytical study of the model of the exoskeleton carried out. It was found that for mechanisms with n movable links of the Cauchy problem for systems of differential equations of motion for any initial conditions there is no single and unlimited continue. Control of the exoskeleton is accomplished using the torques which are located in the hinge-joints in the joints of the links and simulating control actions. Numerical investigation of a model of the exoskeleton is made, a comparison of results of calculations for exoskeletons with various models of units is held. A numerical study of the empirical evidence about the man and his movements is used. It is established that the choice structure of the exoskeleton model with lumped masses is more preferable to a model with perfectly rigid strong core. As an exoskeleton, providing comfortable movement of people, and you should repeat the properties of the musculoskeletal system.

    Просмотров за год: 15. Цитирований: 2 (РИНЦ).
  2. Кривовичев Г.В.
    Кинетические уравнения для моделирования диффузионных процессов методом решеточных уравнений Больцмана
    Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 919-936

    В работе рассмотрена система линейных кинетических уравнений с релаксационным членом типа Бхатнагара–Гросса–Крука для моделирования линейных диффузионных процессов с помощью метода решеточных уравнений Больцмана. Коэффициенты системы зависят от дискретных скоростей, определяемых точками шаблона, построенного в пространстве скоростей частиц. Система может рассматриваться как альтернативная математическая модель для описания диффузионного процесса. Рассматривается несколько случаев базовых шаблонов в пространстве скоростей частиц. Рассмотрены случаи зависящих от параметра коэффициентов. С использованием асимптотического метода Чепмена–Энскога показано, что система может быть сведена к линейному уравнению диффузии, а также получено выражение для коэффициента диффузии. Как результат анализа полученного выражения показано, что решения, получаемые по решеточным уравнениям Больцмана, обладают численной диффузией. Анализ устойчивости проводится посредством исследования волновых мод, допускаемых решениями гиперболической системы уравнений. Для случаев других шаблонов предложен алгоритм численного исследования устойчивости. В результате расчетов показано, что решения системы являются устойчивыми в широком диапазоне входных параметров. Показан достаточный характер физически допустимого условия положительности времени релаксации как условия устойчивости. Посредством аналитических, а также численных исследований показано, что решения в виде волновых мод обладают дисперсией, не типичной для решений линейного уравнения диффузии. Но при этом свойственные дисперсии искажения волнового пакета будут демпфироваться из-за наличия асимптотической устойчивости и в целом поведение решения близко к решению уравнения диффузии. Разностные схемы для построенной системы, помимо моделирования диффузии, могут быть использованы при решении стационарных задач методом установления и в методе расщепления для расчетов течений вязкой жидкости. Полученные результаты могут оказаться полезными при сравнении друг с другом теоретических свойств различных разностных схем метода решеточных уравнений Больцмана для численного моделирования диффузии.

    Krivovichev G.V.
    Kinetic equations for modelling of diffusion processes by lattice Boltzmann method
    Computer Research and Modeling, 2017, v. 9, no. 6, pp. 919-936

    The system of linear hyperbolic kinetic equations with the relaxation term of Bhatnagar–Gross–Krook type for modelling of linear diffusion processes by the lattice Boltzmann method is considered. The coefficients of the equations depend on the discrete velocities from the pattern in velocity space. The system may be considered as an alternative mathematical model of the linear diffusion process. The cases of widely-used patterns on speed variables are considered. The case of parametric coefficients takes into account. By application of the method of Chapman–Enskog asymptotic expansion it is obtained, that the system may be reduced to the linear diffusion equation. The expression of the diffusion coefficient is obtained. As a result of the analysis of this expression, the existence of numerical diffusion in solutions obtained by application of lattice Boltzmann equations is demonstrated. Stability analysis is based on the investigation of wave modes defined by the solutions of hyperbolic system. In the cases of some one-dimensional patterns stability analysis may be realized analytically. In other cases the algorithm of numerical stability investigation is proposed. As a result of the numerical investigation stability of the solutions is shown for a wide range of input parameters. The sufficiency of the positivity of the relaxation parameter for the stability of solutions is demonstrated. The dispersion of the solutions, which is not realized for a linear diffusion equation, is demonstrated analytically and numerically for a wide range of the parameters. But the dispersive wave modes can be damped as an asymptotically stable solutions and the behavior of the solution is similar to the solution of linear diffusion equation. Numerical schemes, obtained from the proposed systems by various discretization techniques may be considered as a tool for computer modelling of diffusion processes, or as a solver for stationary problems and in applications of the splitting lattice Boltzmann method. Obtained results may be used for the comparison of the theoretical properties of the difference schemes of the lattice Boltzmann method for modelling of linear diffusion.

    Просмотров за год: 25.
  3. Волохова А.В., Земляная Е.В., Качалов В.В., Сокотущенко В.Н., Рихвицкий В.С.
    Численное исследование фильтрации газоконденсатной смеси в пористой среде
    Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 209-219

    В последние десятилетия важное значение приобретает разработка методов повышения эффективности извлечения углеводородов в месторождениях с нетрадиционными запасами, содержащими в больших количествах газовый конденсат. Это делает актуальным развитие методов математического моделирования, реалистично описывающих процессы фильтрации газоконденсатной смеси в пористой среде.

    В данной работе рассматривается математическая модель, описывающая динамику изменения давления, скорости и концентрации компонент двухкомпонентной двухфазовой смеси, поступающей в лабораторную модель пласта, заполненную пористым веществом с известными физико-химическими свойствами. Математическая модель описывается системой нелинейных пространственно-одномерных дифференциальных уравнений в частных производных с соответствующими начальными и граничными условиями. Лабораторные эксперименты показывают, что в течение конечного времени система стабилизируется, что дает основание перейти к стационарной постановке задачи.

    Численное решение сформулированной системы обыкновенных дифференциальных уравнений реализовано в среде Maple на основе метода Рунге–Кутты с автоматическим выбором шага. Показано, что полученные на этой основе физические параметры двухкомпонентной газоконденсатной смеси из метана и н-бутана, характеризующие моделируемую систему в режиме стабилизации, хорошо согласуются с имеющимися экспериментальными данными.

    Это подтверждает реалистичность выбранного подхода и обоснованность его дальнейшего развития и применения для компьютерного моделирования неравновесных физических процессов в газоконденсатных смесях в пористой среде с целью выработки в перспективе практических рекомендаций по увеличению извлекаемости углеводородного газоконденсата из природных месторождений. В работе представлена математическая постановка системы нелинейных уравнений в частных производных и соответствующей стационарной задачи, описан метод численного исследования, обсуждаются полученные численные результаты в сравнении с экспериментальными данными.

    Volokhova A.V., Zemlyanay E.V., Kachalov V.V., Sokotushchenko V.N., Rikhvitskiy V.S.
    Numerical investigation of the gas-condensate mixture flow in a porous medium
    Computer Research and Modeling, 2018, v. 10, no. 2, pp. 209-219

    In the last decades, the development of methods for increasing the efficiency of hydrocarbon extraction in fields with unconventional reserves containing large amounts of gas condensate is of great importance. This makes important the development of methods of mathematical modeling that realistically describe physical processes in a gas-condensate mixture in a porous medium.

    In the paper, a mathematical model which describes the dynamics of the pressure, velocity and concentration of the components of a two-component two-phase mixture entering a laboratory model of plast filled with a porous substance with known physicochemical properties is considered. The mathematical model is based on a system of nonlinear spatially one-dimensional partial differential equations with the corresponding initial and boundary conditions. Laboratory experiments show that during a finite time the system stabilizes, what gives a basis to proceed to the stationary formulation of the problem.

    The numerical solution of the formulated system of ordinary differential equations is realized in the Maple environment on the basis of the Runge–Kutta procedure. It is shown that the physical parameters of the gascondensate mixture, which characterize the modeled system in the stabilization regime, obtained on this basis, are in good agreement with the available experimental data. This confirms the correctness of the chosen approach and the validity of its further application and development for computer modeling of physical processes in gas-condensate mixtures in a porous medium. The paper presents a mathematical formulation of the system of partial differential equations and of respective system stationary equations, describes the numerical approach, and discusses the numerical results obtained in comparison with experimental data.

    Просмотров за год: 18. Цитирований: 2 (РИНЦ).
  4. Бабаков А.В., Чечёткин В.М.
    Математическое моделирование вихревого движения в астрофизических объектах на основе газодинамической модели
    Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 631-643

    Рассматривается применение консервативного численного метода потоков для изучения вихревых структур в массивных, быстровращающихся компактных астрофизических объектах, находящихся в условиях самогравитации. Моделирование осуществляется для объектов с различной массой и скоростью вращения. Визуализируются картины вихревой структуры объектов. В расчетах используется газодинамическая модель, в которой газ принимается совершенным и невязким. Численная методика основана на конечно-разностной аппроксимации законов сохранения аддитивных характеристик среды для конечного объема. При этом используются upwind-аппроксимации плотностей распределения массы, компонент импульса и полной энергии. Для моделирования объектов, обладающих быстрым вращением, при эволюционном расчете осуществляется контроль сохранения компонент момента импульса, законы сохранения для которых не входят в систему основных уравнений. Эволюционный расчет осуществляется на основе параллельных алгоритмов, реализованных на вычислительном комплексе кластерной архитектуры. Алгоритмы основаны на стандартизованной системе передачи сообщений Message Passing Interface (MPI). При этом используются как блокирующие, так и неблокирующие процедуры обмена с контролем завершения операций. Осуществляется распараллеливание по пространству по двум или трем направле- ниям в зависимости от размера области интегрирования и параметров вычислительной сетки. Одновременно с распараллеливанием по пространству для каждой подобласти осуществляется распараллеливание по физическим факторам: расчет конвективного переноса и гравитационных сил реализуется параллельно на разных процессорах, что позволяет повысить эффективность алгоритмов. Показывается реальная возможность прямого вычисления гравитационных сил посредством суммирования взаимодействия между всеми конечными объемами в области интегрирования. Для методов конечного объема такой подход кажется более последовательным, чем решение уравнения Пуассона для гравитационного потенциала. Численные расчеты осуществлялись на вычислительном комплексе кластерной архитектуры с пиковой производительностью 523 TFlops. В расчетах использовалось до тысячи процессоров.

    Babakov A.V., Chechetkin V.M.
    Mathematical simulation of vortex motion in the astrophysical objects on the basis of the gas-dynamic model
    Computer Research and Modeling, 2018, v. 10, no. 5, pp. 631-643

    The application of a conservative numerical method of fluxes is examined for studying the vortex structures in the massive, fast-turned compact astrophysical objects, which are in self-gravity conditions. The simulation is accomplished for the objects with different mass and rotational speed. The pictures of the vortex structure of objects are visualized. In the calculations the gas-dynamic model is used, in which gas is accepted perfected and nonviscous. Numerical procedure is based on the finite-difference approximation of the conservation laws of the additive characteristics of medium for the finite volume. The “upwind” approximations of the densities of distribution of mass, components of momentum and total energy are applied. For the simulation of the objects, which possess fast-spin motion, the control of conservation for the component of moment of momentun is carried out during calculation. Evolutionary calculation is carried out on the basis of the parallel algorithms, realized on the computer complex of cluster architecture. Algorithms are based on the standardized system of message transfer Message Passing Interface (MPI). The blocking procedures of exchange and non-blocking procedures of exchange with control of the completion of operation are used. The parallelization on the space in two or three directions is carried out depending on the size of integration area and parameters of computational grid. For each subarea the parallelization based on the physical factors is carried out also: the calculations of gas dynamics part and gravitational forces are realized on the different processors, that allows to raise the efficiency of algorithms. The real possibility of the direct calculation of gravitational forces by means of the summation of interaction between all finite volumes in the integration area is shown. For the finite volume methods this approach seems to more consecutive than the solution of Poisson’s equation for the gravitational potential. Numerical calculations were carried out on the computer complex of cluster architecture with the peak productivity 523 TFlops. In the calculations up to thousand processors was used.

    Просмотров за год: 27.
  5. Тарасов А.Э., Сердобинцев Е.В.
    Моделирование движения рельсового экипажа в кривой в Simpack Rail
    Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 249-263

    В статье рассматривается определение одного из показателей динамических качеств (ПДК) железнодорожного подвижного состава — поперечного ускорения кузова — с использованием системы компьютерного моделирования динамики рельсовых экипажей Simpack Rail на комплексном уровне с переменной скоростью движения в графиковом режиме. Для этой цели использована ранее верифицированная с помощью средств кафедры «Электропоезда и локомотивы» РУТ (МИИТ) модель секции типового грузового электровоза колеи 1520 мм. По этой причине вопросы, связанные с построением и проверкой модели электровоза в препроцессоре, в данной статье опускаются. Подробно описано моделирование железнодорожного пути на основе картографических эксплуатационных данных — плана, профиля и возвышения наружного рельса. Приводятся статистические параметры (моменты) выбранной геометрической неровности (источника возмущения) по каждой рельсовой нити, а также параметры плана и профиля выбранного для моделирования участка пути в виде графиков считанных файлов данных. Измерение непогашенного поперечного ускорения кузова производится с учетом горизонтальной составляющей от действия силы тяжести, что воспроизводит принцип работы реальных датчиков измерения ускорения со свободно расположенной массой. В заключение производится сравнение искомого ПДК, определенного по методу среднего значения абсолютного максимума из смоделированного нестационарного процесса со значением, полученным из экспериментальных данных. По результатам сравнения можно сделать вывод о том, что на данный показатель качества с внешней стороны прежде всего влияют скорость и геометрические характеристики рельсового пути, которые в данном случае были смоделированы в строгом соответствии с картографическими данными реального железнодорожного участка, где проводились испытания. Допущенные условности в модели транспортного средства — секции грузового электровоза (сосредоточение инерционно-массовых характеристик тел в центре их тяжести, малость перемещений между телами) — при соблюдении постоянства основных геометрических и упруго-диссипативных характеристик связей тел позволяют в Simpack Rail смоделировать поведение (отклики) системы с необходимой достоверностью.

    Tarasov A.E., Serdobintsev E.V.
    Simulation of rail vehicles ride in Simpack Rail on the curved track
    Computer Research and Modeling, 2019, v. 11, no. 2, pp. 249-263

    The paper studies the determination for one of the dynamic quality parameter (PDK) of railway vehicles — car body lateral acceleration — by using of computer simulation system for railway vehicles dynamic Simpack Rail. This provide the complex simulation environment with variable velocity depending on the train schedule. The rail vehicle model of typical 1520 mm gauge fright locomotive section used for simulation has been verified by means of the chair “Electric multiple unit cars and locomotives” in the Russian University of Transport (RUT (MIIT)). Due to this homologation the questions of model creating and verification in preprocessor are excluded in this paper. The paper gives the detail description of cartographic track modeling in situation plane, heights plane and superelevation plane based on the real operating data. The statistic parameters (moments) for the rail related track excitation and used cartographic track data of the specified track section in this simulation are given as a numeric and graphical results of reading the prepared data files. The measurement of the car body residual lateral acceleration occur under consideration of the earth gravity acceleration part like the accelerometer measurement in the real world. Finally the desired quality parameter determined by simulation is compared with the same one given by a test drive. The calculation method in both cases is based on the middle value of the absolute maximums picked up within the nonstationary realizations of this parameter. Compared results confirm that this quality factor all the first depends on the velocity and track geometry properties. The simulation of the track in this application uses the strong conformity original track data of the test ride track section. The accepted simplification in the rail vehicle model of fright electric locomotive section (body properties related to the center of gravity, small displacements between the bodies) by keeping the geometric and force law characteristics of the force elements and constraints constant allow in Simpack Rail the simulation with necessary validity of system behavior (reactions).

    Просмотров за год: 20.
  6. Хохлов Н.И., Стецюк В.О., Мисковец И.А.
    Overset grids approach for topography modeling in elastic-wave modeling using the grid-characteristic method
    Компьютерные исследования и моделирование, 2019, т. 11, № 6, с. 1049-1059

    While modeling seismic wave propagation, it is important to take into account nontrivial topography, as this topography causes multiple complex phenomena, such as diffraction at rough surfaces, complex propagation of Rayleigh waves, and side effects caused by wave interference. The primary goal of this research is to construct a method that implements the free surface on topography, utilizing an overset curved grid for characterization, while keeping the main grid structured rectangular. For a combination of the regular and curve-linear grid, the workability of the grid characteristics method using overset grids (also known as the Chimera grid approach) is analyzed. One of the benefits of this approach is computational complexity reduction, caused by the fact that simulation in a regular, homogeneous physical area using a sparse regular rectangle grid is simpler. The simplification of the mesh building mechanism (one grid is regular, and the other can be automatically built using surface data) is a side effect. Despite its simplicity, the method we propose allows us to increase the digitalization of fractured regions and minimize the Courant number. This paper contains various comparisons of modeling results produced by the proposed method-based solver, and results produced by the well-known solver specfem2d, as well as previous modeling results for the same problems. The drawback of the method is that an interpolation error can worsen an overall model accuracy and reduce the computational schema order. Some countermeasures against it are described. For this paper, only two-dimensional models are analyzed. However, the method we propose can be applied to the three-dimensional problems with minimal adaptation required.

    Ключевые слова: overset grid, GCM, seismic wave, interpolation.
    Khokhlov N.I., Stetsyuk V.O., Mitskovets I.A.
    Overset grids approach for topography modeling in elastic-wave modeling using the grid-characteristic method
    Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1049-1059

    While modeling seismic wave propagation, it is important to take into account nontrivial topography, as this topography causes multiple complex phenomena, such as diffraction at rough surfaces, complex propagation of Rayleigh waves, and side effects caused by wave interference. The primary goal of this research is to construct a method that implements the free surface on topography, utilizing an overset curved grid for characterization, while keeping the main grid structured rectangular. For a combination of the regular and curve-linear grid, the workability of the grid characteristics method using overset grids (also known as the Chimera grid approach) is analyzed. One of the benefits of this approach is computational complexity reduction, caused by the fact that simulation in a regular, homogeneous physical area using a sparse regular rectangle grid is simpler. The simplification of the mesh building mechanism (one grid is regular, and the other can be automatically built using surface data) is a side effect. Despite its simplicity, the method we propose allows us to increase the digitalization of fractured regions and minimize the Courant number. This paper contains various comparisons of modeling results produced by the proposed method-based solver, and results produced by the well-known solver specfem2d, as well as previous modeling results for the same problems. The drawback of the method is that an interpolation error can worsen an overall model accuracy and reduce the computational schema order. Some countermeasures against it are described. For this paper, only two-dimensional models are analyzed. However, the method we propose can be applied to the three-dimensional problems with minimal adaptation required.

  7. В статье представлены математические и численные модели взаимосвязанных термо- и гидродинамических процессов эксплуатационного режима разработки единого нефтедобывающего комплекса при гидрогелевом заводнении неоднородного нефтяного пласта, вскрытого системой произвольно расположенных нагнетательных скважин и добывающих скважин, оснащенных погружными многоступенчатыми электроцентробежными насосами. Особенностью нашего подхода является моделирование работы специального наземного оборудования (станции управления погружными насосами и штуцерной камеры на устье добывающих скважин), предназначенного для регулирования режимов работы как всего комплекса в целом, так и его отдельных элементов.

    Полная дифференциальная модель включает в себя уравнения, описывающие нестационарную двухфазную пятикомпонентную фильтрацию в пласте, квазистационарные процессы тепло- и массопереноса в трубах скважин и рабочих каналах погружных насосов. Специальные нелинейные граничные условия моделируют, соответственно, влияние диаметра дросселя на расход и давление на устье каждой добывающей скважины, а также частоты электрического тока на эксплуатационные характеристики погружного насосного узла. Разработка нефтяных месторождений также регулируется посредством изменения забойного давления каждой нагнетательной скважины, концентраций закачиваемых в нее гелеобразующих компонентов, их общих объемов и продолжительности закачки. Задача решается численно с использованием консервативных разностных схем, построенных на основе метода конечных разностей. Разработанные итерационные алгоритмы ориентированы на использование современных параллельных вычислительных технологий. Численная модель реализована в программном комплексе, который можно рассматривать как «интеллектуальную систему скважин» для виртуального управления разработкой нефтяных месторождений.

    The paper provides the mathematical and numerical models of the interrelated thermo- and hydrodynamic processes in the operational mode of development the unified oil-producing complex during the hydrogel flooding of the non-uniform oil reservoir exploited with a system of arbitrarily located injecting wells and producing wells equipped with submersible multistage electrical centrifugal pumps. A special feature of our approach is the modeling of the special ground-based equipment operation (control stations of submersible pumps, drossel devices on the head of producing wells), designed to regulate the operation modes of both the whole complex and its individual elements.

    The complete differential model includes equations governing non-stationary two-phase five-component filtration in the reservoir, quasi-stationary heat and mass transfer in the wells and working channels of pumps. Special non-linear boundary conditions and dependencies simulate, respectively, the influence of the drossel diameter on the flow rate and pressure at the wellhead of each producing well and the frequency electric current on the performance characteristics of the submersible pump unit. Oil field development is also regulated by the change in bottom-hole pressure of each injection well, concentration of the gel-forming components pumping into the reservoir, their total volume and duration of injection. The problem is solved numerically using conservative difference schemes constructed on the base of the finite difference method, and developed iterative algorithms oriented on the parallel computing technologies. Numerical model is implemented in a software package which can be considered as the «Intellectual System of Wells» for the virtual control the oil field development.

  8. Диденко Д.В., Никаноров О.Л., Рогожкин С.А.
    Расчетное исследование запаса до всплытия тепловыделяющей сборки быстрого натриевого реактора
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1307-1321

    В статье приводится описание расчетного исследования гидродинамических процессов, происходящих при течении теплоносителя через тепловыделяющую сборку активной зоны реактора на быстрых нейтронах с натриевым теплоносителем. В рамках исследования разработаны методика и расчетная модель на базе программного комплекса вычислительной гидродинамики FlowVision, которые позволили с помощью обоснованных упрощений получить коэффициент запаса до всплытия тепловыделяющей сборки, а также исследовать гидродинамические характеристики процессов, происходящих при моделировании различных исходных событий, влияющих на движение тепловыделяющей сборки активной зоны реактора.

    Для проведения расчетного обоснования разработана эквивалентная по гидравлическим сопротивлениям модель тепловыделяющей сборки, позволяющая не моделировать явным образом сложную натурную конструкцию сборки. Упрощение геометрии сборки позволило уменьшить количество расчетных ячеек в модели и сократить используемые вычислительные ресурсы и время счета.

    Выполнение расчетов гидродинамических параметров эквивалентной модели тепловыделяющей сборки в программном комплексе FlowVision проводилось в два этапа. На первом этапе с целью определения минимального коэффициента запаса до всплытия тепловыделяющей сборки и минимального расхода теплоносителя, при котором происходит перемещение сборки, проведены стационарные расчеты, в которых на входе в модель были заданы различные значения расхода и, далее, определены силы, действующие на сборку. На втором этапе проведена серия расчетов динамических режимов. В этих режимах на входе в модель было задано скачкообразное увеличение давления, являющееся исходным событием, которое гипотетически может произойти в реакторной установке на быстрых нейтронах с натриевым теплоносителем, а также определены гидродинамические параметры и силы, действующие на тепловыделяющую сборку.

    По результатам первого этапа расчетного исследования подтверждены минимальный коэффициент запаса до всплытия тепловыделяющей сборки реактора на быстрых нейтронах, обоснованный в материалах проекта реакторной установки, а также минимальный расход теплоносителя через сборку, при котором возможно ее перемещение. По итогам второго этапа исследования сделаны выводы о невозможности перемещения тепловыделяющей сборки при исходном событии, связанном со скачкообразным повышением давления в напорной камере реактора.

    Didenko D.V., Nikanorov O.L., Rogozhkin S.A.
    Analytical study of rod lifting margin of fuel assembly of fast sodium reactor
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1307-1321

    The paper describes an analytical study of hydrodynamic processes taking place in the course of coolant flow through a fuel assembly of the core of a fast neutron sodium-cooled reactor. Within the framework of the study, a procedure and an analytical model were developed based on program complex FlowVision of computational fluid dynamics, which, using proved simplifications, permits to obtain a coefficient of rod lifting margin of a fuel assembly and to study hydrodynamic characteristics of processes taking place in the course of simulation of different initial events influencing motion of a reactor core fuel assembly.

    For analytical justification a fuel assembly model was developed, which is equivalent by hydraulic resistance values and permits not to simulate explicitly a complicated full-scale fuel assembly design, thus, decreasing a number of computational cells in the model and, as a result, reducing computational and time resources.

    Hydraulic parameters of the equivalent fuel assembly model in program complex FlowVision were analyzed in two stages. At the first stage, to determine the minimum rod lifting margin coefficient of a fuel assembly, steady-state analyses were performed, where various flowrate values were assigned at the model inlet and forces acting upon the assembly were analyzed. A series of dynamic mode analyses was performed at the second stage. Jump-like pressure increase being the initial event which could occur hypothetically in the fast neutron sodium cooled reactor plant was assigned in these modes. Hydrodynamic parameters and forces acting upon the fuel assembly were determined.

    The results of the first stage of the analytical study proved the minimum coefficient of rod lifting margin of a fuel assembly of the fast neutron reactor justified in reactor plant design documentation. As a result of the second stage of the study, conclusions were made on impossibility for the fuel assembly to move at the initial event associated with jump-like pressure increase in the reactor pressure chamber.

  9. Сосин А.В., Сидоренко Д.А., Уткин П.С.
    Численное исследование взаимодействия ударной волны с подвижными вращающимися телами сложной формы
    Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 513-540

    Статья посвящена разработке вычислительного алгоритма метода декартовых сеток для исследования взаимодействия ударной волны с подвижными телами с кусочно-линейной границей. Интерес к подобным задачам связан с прямым численным моделированием течений двухфазных сред. Эффект формы частицы может иметь значение в задаче о диспергировании пылевого слоя за проходящей ударной волной. Экспериментальные данные по коэффициенту аэродинамического сопротивления несферических частиц практически отсутствуют.

    Математическая модель основана на двумерных уравнениях Эйлера, которые решаются в области с подвижными границами. Определяющая система уравнений численно интегрируется по явной схеме с использованием метода декартовых сеток. Вычислительный алгоритм на шаге интегрирования по времени включает: определение величины шага, расчет динамики движения тела (определение силы и момента, действующих на тело; определение линейной и угловой скоростей тела; расчет новых координат тела), расчет параметров газа. На каждом шаге интегрирования по времени все ячейки делятся на два класса — внешние (внутри тела или пересекаются его границами) и внутренние (целиком заполнены газом). Решение уравнений Эйлера строится только во внутренних. Основная сложность заключается в расчете численного потока через ребра, общие для внутренних и внешних ячеек, пересекаемых подвижными границами тел. Для расчета этого потока используются двухволновое приближение при решении задачи Римана и схема Стигера–Уорминга. Представлено подробное описание вычислительного алгоритма.

    Работоспособность алгоритма продемонстрирована на задаче о подъеме цилиндра с основанием в форме круга, эллипса и прямоугольника за проходящей ударной волной. Тест с круговым цилиндром рассмотрен во множестве статей, посвященных методам погруженной границы. Проведен качественный и количественный анализ траектории движения центра масс цилиндра на основании сравнения с результатами расчетов, представленными в восьми других работах. Для цилиндра с основанием в форме эллипса и прямоугольника получено удовлетворительное согласие по динамике его движения и вращения в сравнении с имеющимися немногочисленными литературными источниками. Для прямоугольника исследована сеточная сходимость результатов. Показано, что относительная погрешность выполнения закона сохранения суммарной массы газа в расчетной области убывает линейно при измельчении расчетной сетки.

    Sosin A.V., Sidorenko D.A., Utkin P.S.
    Numerical study of the interaction of a shock wave with moving rotating bodies with a complex shape
    Computer Research and Modeling, 2021, v. 13, no. 3, pp. 513-540

    The work is devoted to the development of a computational algorithm of the Cartesian grid method for studying the interaction of a shock wave with moving bodies with a piecewise linear boundary. The interest in such problems is connected with direct numerical simulation of two-phase media flows. The effect of the particle shape can be important in the problem of dust layer dispersion behind a passing shock wave. Experimental data on the coefficient of aerodynamic drag of non-spherical particles are practically absent.

    Mathematical model is based on the two-dimensional Euler equations, which are solved in a region with varying boundaries. The defining system of equations is integrated using an explicit scheme and the Cartesian grid method. The computational algorithm at the time integration step includes: determining the step value, calculating the dynamics of the body movement (determining the force and moment acting on the body; determining the linear and angular velocities of the body; calculating the new coordinates of the body), calculating the gas parameters. At each time step, all cells are divided into two classes – external (inside the body or intersected by its boundaries) and internal (completely filled with gas). The solution of the Euler equations is constructed only in the internal ones. The main difficulty is the calculation of the numerical flux through the edges common to the internal and external cells intersected by the moving boundaries of the bodies. To calculate this flux, we use a two-wave approximation for solving the Riemann problem and the Steger-Warming scheme. A detailed description of the numerical algorithm is presented.

    The efficiency of the algorithm is demonstrated on the problem of lifting a cylinder with a base in the form of a circle, ellipse and rectangle behind a passing shock wave. A circular cylinder test was considered in many papers devoted to the immersed boundary methods development. A qualitative and quantitative analysis of the trajectory of the cylinder center mass is carried out on the basis of comparison with the results of simulations presented in eight other works. For a cylinder with a base in the form of an ellipse and a rectangle, a satisfactory agreement was obtained on the dynamics of its movement and rotation in comparison with the available few literary sources. Grid convergence of the results is investigated for the rectangle. It is shown that the relative error of mass conservation law fulfillment decreases with a linear rate.

  10. Юдин Н.Е.
    Модифицированный метод Гаусса–Ньютона для решения гладкой системы нелинейных уравнений
    Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 697-723

    В работе предлагается новая версия метода Гаусса–Ньютона для решения системы нелинейных уравнений, основанная на идеях использования верхней оценки нормы невязки системы уравнений и квадратичной регуляризации. Предложенная версия метода Гаусса–Ньютона на практике фактически задает целое параметризованное семейство методов решения систем нелинейных уравнений и задач восстановления регрессионной зависимости. Разработанное семейство методов Гаусса–Ньютона состоит целиком из итеративных методов, включающих в себя также специальные формы алгоритмов Левенберга–Марквардта, с обобщением на случаи применения в неевклидовых нормированных пространствах. В разработанных методах используется локальная модель, осуществляющая параметризованное проксимальное отображение и допускающая на практике применение неточного оракула в формате «черного ящика» с ограничением на точность вычисления и на сложность вычисления. Для разработанного семейства методов приведен анализ эффективности в терминах количества итераций алгоритма, точности и сложности представления локальной модели и вычисления оракула, параметров размерности решаемой задачи с выводом локальной и глобальной сходимости при использовании произвольного оракула. В работе представлены условия глобальной сублинейной сходимости для предложенного семейства методов решения системы нелинейных уравнений, состоящих из гладких по Липшицу функций. В рамках дополнительных естественных предположений о невырожденности системы нелинейных функций установлена локальная суперлинейная сходимость для рассмотренного семейства методов. При выполнении условия Поляка–Лоясиевича для системы нелинейных уравнений доказана локальная и глобальная линейная сходимость рассмотренных методов Гаусса–Ньютона. Помимо теоретического обоснования методов, в работе рассматриваются вопросы их практической реализации. В частности, в проведенных экспериментах для точного оракула приводятся схемы эффективного вычисления в зависимости от параметров размерности решаемой задачи. Предложенное семейство методов объединяет в себе несколько существующих и часто используемых на практике модификаций метода Гаусса–Ньютона, позволяя получить гибкий и удобный в использовании метод, реализуемый на практике с помощью стандартных техник выпуклой оптимизации и вычислительной линейной алгебры.

    Yudin N.E.
    Modified Gauss–Newton method for solving a smooth system of nonlinear equations
    Computer Research and Modeling, 2021, v. 13, no. 4, pp. 697-723

    In this paper, we introduce a new version of Gauss–Newton method for solving a system of nonlinear equations based on ideas of the residual upper bound for a system of nonlinear equations and a quadratic regularization term. The introduced Gauss–Newton method in practice virtually forms the whole parameterized family of the methods solving systems of nonlinear equations and regression problems. The developed family of Gauss–Newton methods completely consists of iterative methods with generalization for cases of non-euclidean normed spaces, including special forms of Levenberg–Marquardt algorithms. The developed methods use the local model based on a parameterized proximal mapping allowing us to use an inexact oracle of «black–box» form with restrictions for the computational precision and computational complexity. We perform an efficiency analysis including global and local convergence for the developed family of methods with an arbitrary oracle in terms of iteration complexity, precision and complexity of both local model and oracle, problem dimensionality. We present global sublinear convergence rates for methods of the proposed family for solving a system of nonlinear equations, consisting of Lipschitz smooth functions. We prove local superlinear convergence under extra natural non-degeneracy assumptions for system of nonlinear functions. We prove both local and global linear convergence for a system of nonlinear equations under Polyak–Lojasiewicz condition for proposed Gauss– Newton methods. Besides theoretical justifications of methods we also consider practical implementation issues. In particular, for conducted experiments we present effective computational schemes for the exact oracle regarding to the dimensionality of a problem. The proposed family of methods unites several existing and frequent in practice Gauss–Newton method modifications, allowing us to construct a flexible and convenient method implementable using standard convex optimization and computational linear algebra techniques.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.