Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'exoskeleton':
Найдено статей: 2
  1. В статье рассматривается модель антропоморфного механизма типа экзоскелета со звеньями переменной длины. Комплексно рассмотрены четыре модели звеньев переменной длины: модель звена экзоскелета переменной длины с упругим элементом и абсолютно твердым весомым стержнем, модель телескопического звена; модель звена с массами в шарнирах-суставах и между ними, модель звена с произвольным количеством масс. Составлены дифференциальные уравнения движения в форме уравнений Лагранжа второго рода. На основе проведенного анализа дифференциальных уравнений движения для многозвенных стержневых механических систем типа экзосклета выявлена их структура, позволившая представить их в векторно-матричном виде. Впервые установлены общие закономерности построения матриц и получены обобщения выражений для элементов матриц в двухмерном случае. Приводятся новые рекуррентный и матричный методы составления дифференциальных уравнений движения. Предлагается единый подход к построению дифференциальных уравнений движения экзоскелета на основе разработанных рекуррентного и матричного методов записи дифференциальных уравнений движения экзоскелета. Проведено сопоставление времени составления дифференциальных уравнений движения предложенными методами, в сравнении с уравнениями Лагранжа второго рода, в системе компьютерной математики Mathematica. Осуществлено аналитическое исследование модели экзоскелета. Установлено, что для механизмов с $n$ подвижными звеньями решение задачи Коши для систем дифференциальных уравнений движения при любых начальных условиях существует, единственно и неограниченно продолжаемо. Управление экзоскелетом осуществляется с помощью крутящих моментов, расположенных в шарнирах-суставах в местах соединения звеньев и моделирующих управляющие воздействия. Выполнено численное исследование модели экзоскелета, проведено сопоставление результатов расчетов для экзоскелетов с различными моделями звеньев. Для численного исследования использованы эмпирические данные о человеке и его движениях. Установлено, что при выборе конструкции экзоскелета модель с сосредоточенными массами является предпочтительной, нежели модель с абсолютно твердым весомым стержнем, так как экзоскелет, обеспечивающий комфортабельные передвижения человека в нем, должен повторять свойства опорно-двигательного аппарата.

    The article discusses the model of the anthropomorphic type of mechanism of the exoskeleton with links of variable length. Four models of parts of variable length are considered comprehensively: the model link of the exoskeleton of variable length with a resilient member and a rigid strong core; the model of the telescopic link; the model link with the masses in the hinge-joint between them; the link model with an arbitrary number of masses. The differential equations of motion in the form of Lagrange equations of the second kind are made. On the basis of analysis of differential equations of motion for multi-link rod of a mechanical system type, exoskeleton revealed their structure, which allowed us to represent them in vector-matrix form. The General pattern of building matrices are established for the first time and the generalization of the expressions for elements of matrices in two-dimensional case are obtained. New recursive and matrix methods of composing of differential equations of motion are given. A unified approach to constructing differential equations of motion of the exoskeleton based on the developed recursive and matrix methods write differential equations of motion of the proposed exoskeleton. Comparison of the time of writing the differential equations of motion proposed methods, in comparison with the Lagrange equations of the second kind, in the system of computer mathematics Mathematica conducted. An analytical study of the model of the exoskeleton carried out. It was found that for mechanisms with n movable links of the Cauchy problem for systems of differential equations of motion for any initial conditions there is no single and unlimited continue. Control of the exoskeleton is accomplished using the torques which are located in the hinge-joints in the joints of the links and simulating control actions. Numerical investigation of a model of the exoskeleton is made, a comparison of results of calculations for exoskeletons with various models of units is held. A numerical study of the empirical evidence about the man and his movements is used. It is established that the choice structure of the exoskeleton model with lumped masses is more preferable to a model with perfectly rigid strong core. As an exoskeleton, providing comfortable movement of people, and you should repeat the properties of the musculoskeletal system.

    Просмотров за год: 15. Цитирований: 2 (РИНЦ).
  2. Скворцова В.А., Абдуллин Р.Р., Степанова А.А.
    Оптимизация параметров и структуры параллельного сферического манипулятора
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1523-1534

    Статья представляет собой исследование математической модели и особенностей кинематики параллельного сферического манипулятора. Этот тип манипулятора был предложен еще в 80-х годах прошлого века и с тех пор нашел применение в экзоскелетах и реабилитационных роботах благодаря своей структуре, которая позволяет имитировать естественные движения суставов человеческого тела.

    Параллельный сферический манипулятор имеет три параллельных двухзвенных рычажных механизма, которые соединяют две платформы — базовую и мобильную. Звенья механизма имеют дугообразную форму. Геометрически манипулятор можно описать с помощью двух виртуальных пирамид, которые расположены друг над другом.

    В данной работе рассматриваются два основных типа конфигураций манипулятора (классическая и асимметричная) и решаются основные кинематические задачи для каждой из них. Исследование показывает, что асимметричное исполнение манипулятора имеет максимальное рабочее пространство, особенно когда моторы установлены в месте соединения опорных звеньев манипулятора.

    Для оптимизации параметров параллельного сферического манипулятора вводится метрика полезного объема рабочего пространства. Данная метрика представляет собой объем сектора сферы, в котором робот не испытывает внутренних коллизий или сингулярных состояний. Внутри параллельного сферического манипулятора возможны три типа сингулярных состояний: последовательная, параллельная и смешанная сингулярность. Для расчета полезного объема были учтены все три типа сингулярностей. В ходе исследования решалась задача максимизации полезного объема рабочего пространства.

    В результате исследования было обнаружено, что асимметричная конфигурация сферического манипулятора обеспечивает максимальное рабочее пространство, когда моторы расположены в месте соединения опорных звеньев механизмов робота. При этом для достижения максимального рабочего пространства параметр $\beta_1$ должен быть равен нулю градусов. Это позволило создать прототип робота, в котором вместо нижних опорных звеньев использована радиусная рельса, вдоль которой движутся моторы. Это позволило уменьшить линейные размеры самого робота и повысить жесткость конструкции.

    Полученные результаты могут быть использованы для оптимизации параметров параллельного сферического манипулятора с целью применения его в различных промышленных и научных задачах, а также для дальнейшего исследования других типов параллельных роботов и манипуляторов.

    Skvortsova V.A., Abdullin R.R., Stepanova A.A.
    Optimisation of parameters and structure of a parallel spherical manipulator
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1523-1534

    The paper is a study of the mathematical model and kinematics of a parallel spherical manipulator. This type of manipulator was proposed back in the 80s of the last century and has since found application in exoskeletons and rehabilitation robots due to its structure, which allows imitating natural joint movements of the human body.

    The Parallel Spherical Manipulator is a robot with three legs and two platforms, a base platform and a mobile platform. Its legs consist of two support links that are arc-shaped. Mathematically, the manipulator can be described using two virtual pyramids that are placed on top of each other.

    The paper considers two types of manipulator configurations: classical and asymmetric, and solves basic kinematic problems for each. The study shows that the asymmetric design of the manipulator has the maximum workspace, especially when the motors are mounted at the joints of the manipulator’s links inside legs.

    To optimize the parameters of the parallel spherical manipulator, we introduced a metric of usable workspace volume. This metric represents the volume of the sector of the sphere in which the robot does not experience internal collisions or singular states. There are three types of singular states possible within a parallel spherical manipulator — serial, parallel, and mixed singularity. We used all three types of singularities to calculate the useful volume. In our research work, we solved the problem related to maximizing the usable volume of the workspace.

    Through our research work, we found that the asymmetric configuration of the spherical manipulator maximizes the workspace when the motors are located at the articulation point of the robot leg support arms. At the same time, the parameter $\beta_1$ must be zero degrees to maximize the workspace. This allowed us to create a prototype robot in which we eliminated the use of lower links in legs in favor of a radiused rail along which the motors run. This allowed us to reduce the linear dimensions of the robot itself and gain on the stiffness of the structure.

    The results obtained can be used to optimize the parameters of the parallel spherical manipulator in various industrial and scientific applications, as well as for further research of other types of parallel robots and manipulators.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.