Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Космологические модели Вселенной, не имеющей Начала и сингулярности
Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 473-486Предлагается новый тип космологических моделей, космологических моделей для Вселенной, не имеющей Начала, то есть существовавшей всегда, и эволюционирующей из бесконечно далекого прошлого.
Предлагаемые космологические модели являются альтернативными по отношению к космологическим моделям, основывающимся на так называемой теории Большого взрыва, по которой Вселенная имеет конечный возраст и произошла из начальной сингулярности.
В этой теории, по нашему мнению, есть определенные проблемы, которые в предлагаемых нами космологических моделях мы избегаем.
В наших космологических моделях Вселенная, развиваясь из бесконечно далекого прошлого, сжимаясь, достигает конечного минимума расстояний между объектами порядка комптоновской длины волны $\lambda_C$ адронов и максимальной плотности вещества, соответствующей адронной эре Вселенной, и затем расширяется, проходя все стадии своей эволюции, установленные астрономическими наблюдениями, вплоть до эры инфляции.
Материальной основой, обеспечивающей принципиальный характер эволюции Вселенной в предлагаемых космологических моделях, является нелинейное дираковское спинорное поле $\psi (x^k)$ с нелинейностью в лагранжиане поля типа $\beta (\bar\psi\psi)^n$ ($\beta = const$, $n$ — рациональное число), где $\psi(x^k)$ — 4-компонентный дираковский спинор, а $\bar{\psi}$ — сопряженный спинор.
Кроме спинорного поля $\psi$ в космологических моделях у нас присутствуют и другие компоненты материи в виде идеальной жидкости с уравнением состояния $p = w\varepsilon$ ($w = const$), при различных значениях коэффициента $w$ $(−1 < w < 1)$, которые обеспечивают эволюцию Вселенной с надлежащими периодами развития в соответствии с установленными наблюдаемыми данными. Здесь $p$ — давление, $\varepsilon = \rho c^2$ — плотность энергии, $\rho$ — плотность массы, а $c$ — скорость света в вакууме.
Оказалось, что наиболее близкими к реальности являются космологические модели с нелинейным спинорным полем с показателем нелинейности $n = 2$.
В этом случае нелинейное спинорное поле представляется уравнением Дирака с кубической нелинейностью.
Но такое уравнение есть нелинейное спинорное уравнение Иваненко–Гейзенберга, которое В. Гейзенберг взял в качестве основы для построения единой спинорной теории материи.
Удивительное совпадение, что одно и то же нелинейное спинорное уравнение может быть основой для построения теории двух разных фундаментальных объектов природы, эволюционирующей Вселенной и физической материи.
Разработки представляемых космологических моделей дополняются их компьютерными исследованиями, результаты которых в работе представлены графически.
Ключевые слова: космологические модели, гравитация, спинорное поле, нелинейность, эволюция Вселенной, компьютерные исследования. -
Многомерный узловой метод характеристик для гиперболических систем
Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 19-32Предложен многомерный узловой метод характеристик, предназначенный для интегрирования гиперболических систем, базирующийся на расщеплении исходной системы уравнений на ряд одномерных подсистем, для расчета которых использован одномерный узловой метод характеристик. Приведены расчетные формулы, детально описана методика вычислений применительно к односкоростной модели гетерогенной среды при наличии сил гравитации. Представленный метод применим и к другим гиперболическим системам уравнений. С помощью этого явного, неконсервативного, первого порядка точности метода рассчитан ряд тестовых задач и показано, что в рамках предлагаемого подхода за счет привлечения дополнительных точек в шаблон схемы возможно проведение вычислений с числами Куранта, превышающими единицу. Так, в расчете обтекания трехмерной ступеньки потоком гетерогенной смеси число Куранта равнялось 1.2. В случае применения метода Годунова при решении этой же задачи макси- мальное число Куранта, при котором возможен устойчивый счет, имеет значение 0.13 × 10−2. Еще одна особенность многомерного метода характеристик связана со слабой зависимостью временного шага от размерности задачи, что существенно расширяет возможности этого подхода. С использованием этого метода рассчитан ряд задач, которые ранее считались «тяжелыми» для таких численных методов, как методы Годунова, Куранта – Изаксона – Рис, что связано с тем, что в нем наиболее полно использованы преимущества характеристического представления интегрируемой системы уравнений.
-
Математическое моделирование вихревого движения в астрофизических объектах на основе газодинамической модели
Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 631-643Просмотров за год: 27.Рассматривается применение консервативного численного метода потоков для изучения вихревых структур в массивных, быстровращающихся компактных астрофизических объектах, находящихся в условиях самогравитации. Моделирование осуществляется для объектов с различной массой и скоростью вращения. Визуализируются картины вихревой структуры объектов. В расчетах используется газодинамическая модель, в которой газ принимается совершенным и невязким. Численная методика основана на конечно-разностной аппроксимации законов сохранения аддитивных характеристик среды для конечного объема. При этом используются upwind-аппроксимации плотностей распределения массы, компонент импульса и полной энергии. Для моделирования объектов, обладающих быстрым вращением, при эволюционном расчете осуществляется контроль сохранения компонент момента импульса, законы сохранения для которых не входят в систему основных уравнений. Эволюционный расчет осуществляется на основе параллельных алгоритмов, реализованных на вычислительном комплексе кластерной архитектуры. Алгоритмы основаны на стандартизованной системе передачи сообщений Message Passing Interface (MPI). При этом используются как блокирующие, так и неблокирующие процедуры обмена с контролем завершения операций. Осуществляется распараллеливание по пространству по двум или трем направле- ниям в зависимости от размера области интегрирования и параметров вычислительной сетки. Одновременно с распараллеливанием по пространству для каждой подобласти осуществляется распараллеливание по физическим факторам: расчет конвективного переноса и гравитационных сил реализуется параллельно на разных процессорах, что позволяет повысить эффективность алгоритмов. Показывается реальная возможность прямого вычисления гравитационных сил посредством суммирования взаимодействия между всеми конечными объемами в области интегрирования. Для методов конечного объема такой подход кажется более последовательным, чем решение уравнения Пуассона для гравитационного потенциала. Численные расчеты осуществлялись на вычислительном комплексе кластерной архитектуры с пиковой производительностью 523 TFlops. В расчетах использовалось до тысячи процессоров.
-
Применение метода линий тока для ускорения расчетов неизотермической нелинейной фильтрации
Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 709-728Просмотров за год: 18.Работа посвящена численному моделированию плоской неизотермической нелинейной фильтрации в пористой среде. Рассматривается двумерная нестационарная задача течения высоковязкой нефти, воды и пара с фазовыми переходами. Нефтяная фаза представлена двумя псевдокомпонентами: легкой и тяжелой фракциями, которые, как и водный компонент, могут присутствовать в газовой фазе. Нефть проявляет вязкопластическую реологию, ее фильтрация не подчиняется классическому линейному закону Дарси. При моделировании учтена не только зависимость плотности и вязкости флюидов от температуры, но и улучшение реологических свойств нефти с ростом температуры.
Для численного решения задачи применен метод линий тока с расщеплением по физическим процессам, заключающийся в отделении конвективного переноса, направленного вдоль скорости фильтрации, от теплопроводности и гравитации. Предложен новый подход применения метода линий тока, позволяющий корректно моделировать задачи нелинейной фильтрации с реологией, зависящей от температуры. Суть этого алгоритма заключается в рассмотрении процесса интегрирования как совокупности квазиравновесных состояний, которые достигаются путем решения системы на глобальной сетке и между которыми решение проводится на сетке из линий тока. Использование метода линий тока позволяет не только ускорить расчеты фильтрации, но и получить физически достоверную картину решения, так как интегрирование системы происходит на сетке, совпадающей с направлением течения флюидов.
Помимо метода линий тока, в работе представлен алгоритм учета негладких коэффициентов, возникающих при решении уравнения течения вязкопластической нефти. Использование этого алгоритма позволяет сохранить достаточно большой шаг по времени и не изменяет физическую картину решения.
Полученные результаты сопоставлены с известными аналитическими решениями, а также с результатами, полученными при расчете в коммерческом пакете. Анализ проведенных тестовых расчетов на сходимость по количеству линий тока, а также на разных сетках на линиях тока обосновывает применимость предлагаемого алгоритма, а уменьшение времени расчета, по сравнению с традиционными методами, демонстрирует практическую значимость этого подхода.
-
Численно-аналитическое моделирование гравитационного линзирования электромагнитных волн в случайно-неоднородной космической плазме
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 433-443Для интерпретации данных измерений астрофизических прецизионных инструментов нового поколения разработан аппарат численно-аналитического моделирования характеристик распространения электромагнитных волн в хаотической космической плазме с учетом эффектов гравитации. Задача распространения волн в искривленном (римановом) пространстве решена в евклидовом пространстве путем введения эффективного показателя преломления вакуума, выраженного через потенциал тяготения. Задавая различные модели плотности распределения массы астрофизических объектов и решая уравнение Пуассона, можно рассчитать гравитационный потенциал и вычислить эффективный показатель преломления вакуума. В предположении аддитивности вкладов различных объектов в общее гравитационное поле предложена приближенная модель эффективного показателя преломления. Считая пространственные масштабы показателя преломления много больше длины волны, расчет характеристик электромагнитных волн в поле тяготения астрофизических объектов проводится в приближении геометрической оптики. В основу численно-аналитического аппарата моделирования траекторных характеристик волн положены лучевые дифференциальные уравнения в форме Эйлера. Хаотические неоднородности космической плазмы заданы моделью пространственной корреляционной функции показателя преломления. Расчеты рефракционного рассеяния волн выполнены в приближении метода возмущений. Получены интегральные выражения для статистических моментов боковых отклонений лучей в картинной плоскости наблюдателя. С помощью аналитических преобразований интегралы для моментов сведены к системе обыкновенных дифференциальных уравнений первого порядка для совместного численного расчета средних и среднеквадратичных отклонений лучей. Приведены результаты численно-аналитического моделирования траекторной картины распространения электромагнитных волн в межзвездной среде с учетом воздействий полей тяготения космических объектов и рефракционного рассеяния волн на неоднородностях показателя преломления окружающей плазмы. На основе результатов моделирования сделана количественная оценка условий стохастического замывания эффектов гравитационного линзирования электромагнитных волн в различных частотных диапазонах. Показано, что рабочие частоты метрового диапазона длин волн представляют собой условную низкочастотную границу для наблюдений эффекта гравитационного линзирования в стохастической космической плазме. Предложенный аппарат численно-аналитического моделирования можно использовать для анализа структуры электромагнитного излучения квазаров, прошедшего группу галактик.
-
Введение барионных струн в модель структуры спиральных галактик
Компьютерные исследования и моделирование, 2012, т. 4, № 3, с. 597-612Просмотров за год: 2. Цитирований: 1 (РИНЦ).Предлагается новый альтернативный подход для объяснения плоского спектра скоростей орбитального движения звезд на периферии спиральных галактик и, в частности, значительного превышения значений скоростей, вычисленных по теореме о вириале. Концепция заключается в предположении о наличии у гравитационного поля центрального тела галактики цилиндрической, а не сферической симметрии. Эту конфигурацию поля можно объяснить наличием на оси галактики космической струны, длина которой перекрывает диаметр диска галактики. Эта модель будет подвергнута сравнению с более традиционной концепцией наличия у спиральной галактики шарового гало темной материи. Для этого подхода также будет предложена кинематическая модель и высказана гипотеза о природе темного вещества. Исследуются данные астрономических наблюдений о наличии космических струн в зонах, примыкающих к галактикам.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"