Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Quadratic Padé Approximation: Numerical Aspects and Applications
Компьютерные исследования и моделирование, 2019, т. 11, № 6, с. 1017-1031Padé approximation is a useful tool for extracting singularity information from a power series. A linear Padé approximant is a rational function and can provide estimates of pole and zero locations in the complex plane. A quadratic Padé approximant has square root singularities and can, therefore, provide additional information such as estimates of branch point locations. In this paper, we discuss numerical aspects of computing quadratic Padé approximants as well as some applications. Two algorithms for computing the coefficients in the approximant are discussed: a direct method involving the solution of a linear system (well-known in the mathematics community) and a recursive method (well-known in the physics community). We compare the accuracy of these two methods when implemented in floating-point arithmetic and discuss their pros and cons. In addition, we extend Luke’s perturbation analysis of linear Padé approximation to the quadratic case and identify the problem of spurious branch points in the quadratic approximant, which can cause a significant loss of accuracy. A possible remedy for this problem is suggested by noting that these troublesome points can be identified by the recursive method mentioned above. Another complication with the quadratic approximant arises in choosing the appropriate branch. One possibility, which is to base this choice on the linear approximant, is discussed in connection with an example due to Stahl. It is also known that the quadratic method is capable of providing reasonable approximations on secondary sheets of the Riemann surface, a fact we illustrate here by means of an example. Two concluding applications show the superiority of the quadratic approximant over its linear counterpart: one involving a special function (the Lambert $W$-function) and the other a nonlinear PDE (the continuation of a solution of the inviscid Burgers equation into the complex plane).
Quadratic Padé Approximation: Numerical Aspects and Applications
Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1017-1031Padé approximation is a useful tool for extracting singularity information from a power series. A linear Padé approximant is a rational function and can provide estimates of pole and zero locations in the complex plane. A quadratic Padé approximant has square root singularities and can, therefore, provide additional information such as estimates of branch point locations. In this paper, we discuss numerical aspects of computing quadratic Padé approximants as well as some applications. Two algorithms for computing the coefficients in the approximant are discussed: a direct method involving the solution of a linear system (well-known in the mathematics community) and a recursive method (well-known in the physics community). We compare the accuracy of these two methods when implemented in floating-point arithmetic and discuss their pros and cons. In addition, we extend Luke’s perturbation analysis of linear Padé approximation to the quadratic case and identify the problem of spurious branch points in the quadratic approximant, which can cause a significant loss of accuracy. A possible remedy for this problem is suggested by noting that these troublesome points can be identified by the recursive method mentioned above. Another complication with the quadratic approximant arises in choosing the appropriate branch. One possibility, which is to base this choice on the linear approximant, is discussed in connection with an example due to Stahl. It is also known that the quadratic method is capable of providing reasonable approximations on secondary sheets of the Riemann surface, a fact we illustrate here by means of an example. Two concluding applications show the superiority of the quadratic approximant over its linear counterpart: one involving a special function (the Lambert $W$-function) and the other a nonlinear PDE (the continuation of a solution of the inviscid Burgers equation into the complex plane).
-
Моделирование процессов разборки сложных изделий
Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 525-537Работа посвящена моделированию процессов разборки сложных изделий в системах автоматизированного проектирования. Возможность демонтажа изделия в заданной последовательности формируется на ранних этапах проектирования, а реализуется в конце жизненного цикла. Поэтому современные системы автоматизированного проектирования должны иметь инструменты для оценки сложности демонтажа деталей и сборочных единиц. Предложена гиперграфовая модель механической структуры изделия. Показано, что математическим описанием когерентных и секвенциальных операций разборки является нормальное разрезание ребра гиперграфа. Доказана теорема о свойствах нормальных разрезаний. Данная теорема позволяет организовать простую рекурсивную процедуру генерации всех разрезаний гиперграфа. Множество всех разрезаний представляется в виде И–ИЛИ-дерева. Дерево содержит информацию о планах разборки изделия и его частей. Предложены математические описания процессов разборки различного типа: полной, неполной, линейной, нелинейной. Показано, что решающий граф И–ИЛИ-дерева представляет собой модель разборки изделия и всех его составных частей, полученных в процессе демонтажа. Рассмотрена важная характеристика сложности демонтажа деталей — глубина вложения. Разработан способ эффективного расчета оценки снизу данной характеристики.
Ключевые слова: разборка, система автоматизированного проектирования, механическая структура, гиперграф, И–ИЛИ-дерево, последовательность разборки, сложность разборки, моделирование разборки.
Modeling of disassembly processes of complex products
Computer Research and Modeling, 2022, v. 14, no. 3, pp. 525-537The work is devoted to modeling the processes of disassembling complex products in CADsystems. The ability to dismantle a product in a given sequence is formed at the early design stages, and is implemented at the end of the life cycle. Therefore, modern CAD-systems should have tools for assessing the complexity of dismantling parts and assembly units of a product. A hypergraph model of the mechanical structure of the product is proposed. It is shown that the mathematical description of coherent and sequential disassembly operations is the normal cutting of the edge of the hypergraph. A theorem on the properties of normal cuts is proved. This theorem allows us to organize a simple recursive procedure for generating all cuts of the hypergraph. The set of all cuts is represented as an AND/OR-tree. The tree contains information about plans for disassembling the product and its parts. Mathematical descriptions of various types of disassembly processes are proposed: complete, incomplete, linear, nonlinear. It is shown that the decisive graph of the AND/OR-tree is a model of disassembling the product and all its components obtained in the process of dismantling. An important characteristic of the complexity of dismantling parts is considered — the depth of nesting. A method of effective calculation of the estimate from below has been developed for this characteristic.
-
Возникновение противоречий в теории множеств Цермело–Френкеля при расширении базового языка рекурсивными функциями
Компьютерные исследования и моделирование, 2009, т. 1, № 4, с. 367-380Показано, что если в аксиоматике Цермело–Френкеля использовать расширение базового языка, которое допускает в формулах отношения на значениях рекурсивных функций от натурального аргумента, то в теории множеств возникают противоречивые конструкции на уровне арифметики.
Occurence of contradictions in Zermelo–Fraenkel theory under extension of base language by recursion functions
Computer Research and Modeling, 2009, v. 1, no. 4, pp. 367-380Просмотров за год: 1. Цитирований: 2 (РИНЦ).It is shown that the extension of base language in Zermelo–Fraenkel theory, which allows a relations on recursion function of natural argument, may lead in Set Theory to contradictive constructions on arithmetic level.
-
Численное решение нелинейныхинтегра льных уравнений второго рода типа Урысона методом последовательныхквадра тур с использованием погруженной схемы Дормана–Принса 5(4)
Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 275-300Представлен итерационный алгоритм, который численно решает нелинейные одномерные несингулярные интегральные уравнения Фредгольма и Вольтерры второго рода типа Урысона. Показано, что метод последовательных приближений Пикара может быть использован при численном решении такого типа уравнений. Сходимость числовой схемы гарантируется теоремами о неподвижной точке. При этом квадратурный алгоритм основан на явной форме встроенного правила Рунге–Кутты пятого порядка с адаптивным контролем размера шага. Возможность контроля локальных ошибок квадратур позволяет создавать очень точные автоматические числовые схемы и значительно уменьшить основной недостаток итераций Пикара, а именно чрезвычайно большое количество вычислений с увеличением глубины рекурсии. Наш алгоритм организован так, что по сравнению с большинством подходов нелинейность интегральных уравнений не вызывает каких-либо дополнительных вычислительных трудностей, его очень просто применять и реализовывать в программе. Наш алгоритм демонстрирует практически важные черты универсальности. Во-первых, следует подчеркнуть, что метод столь же прост в применении к нелинейным, как и к линейным уравнениям типа Фредгольма и Вольтерры. Во-вторых, алгоритм снабжен правилами останова, по которым вычисления могут в значительной степени контролироваться автоматически. Представлен компактный C++-код описанного алгоритма. Реализация нашей программы является самодостаточной: она не требует никаких предварительных вычислений, никаких внешних функций и библиотек и не требует дополнительной памяти. Приведены числовые примеры, показывающие применимость, эффективность, надежность и точность предложенного подхода.
Ключевые слова: уравнения типа Фредгольма и Вольтерры, теорема о неподвижной точке, анализ погрешностей ошибок, итерационные методы, погруженный метод Рунге–Кутты пятого порядка, адаптивный контроль величины шага.
Numerical solution of Urysohn type nonlinear second kind integral equations by successive quadratures using embedded Dormand and Prince scheme 5(4)
Computer Research and Modeling, 2020, v. 12, no. 2, pp. 275-300We present the iterative algorithm that solves numerically both Urysohn type Fredholm and Volterra nonlinear one-dimensional nonsingular integral equations of the second kind to a specified, modest user-defined accuracy. The algorithm is based on descending recursive sequence of quadratures. Convergence of numerical scheme is guaranteed by fixed-point theorems. Picard’s method of integrating successive approximations is of great importance for the existence theory of integral equations but surprisingly very little appears on numerical algorithms for its direct implementation in the literature. We show that successive approximations method can be readily employed in numerical solution of integral equations. By that the quadrature algorithm is thoroughly designed. It is based on the explicit form of fifth-order embedded Runge–Kutta rule with adaptive step-size self-control. Since local error estimates may be cheaply obtained, continuous monitoring of the quadrature makes it possible to create very accurate automatic numerical schemes and to reduce considerably the main drawback of Picard iterations namely the extremely large amount of computations with increasing recursion depth. Our algorithm is organized so that as compared to most approaches the nonlinearity of integral equations does not induce any additional computational difficulties, it is very simple to apply and to make a program realization. Our algorithm exhibits some features of universality. First, it should be stressed that the method is as easy to apply to nonlinear as to linear equations of both Fredholm and Volterra kind. Second, the algorithm is equipped by stopping rules by which the calculations may to considerable extent be controlled automatically. A compact C++-code of described algorithm is presented. Our program realization is self-consistent: it demands no preliminary calculations, no external libraries and no additional memory is needed. Numerical examples are provided to show applicability, efficiency, robustness and accuracy of our approach.
-
Новые алгоритмы составления дифференциальных уравнений движения экзоскелета с переменной длиной звеньев и управлением в шарнирах-суставах
Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 201-210В статье рассматривается модель антропоморфного механизма типа экзоскелета со звеньями переменной длины. Комплексно рассмотрены четыре модели звеньев переменной длины: модель звена экзоскелета переменной длины с упругим элементом и абсолютно твердым весомым стержнем, модель телескопического звена; модель звена с массами в шарнирах-суставах и между ними, модель звена с произвольным количеством масс. Составлены дифференциальные уравнения движения в форме уравнений Лагранжа второго рода. На основе проведенного анализа дифференциальных уравнений движения для многозвенных стержневых механических систем типа экзосклета выявлена их структура, позволившая представить их в векторно-матричном виде. Впервые установлены общие закономерности построения матриц и получены обобщения выражений для элементов матриц в двухмерном случае. Приводятся новые рекуррентный и матричный методы составления дифференциальных уравнений движения. Предлагается единый подход к построению дифференциальных уравнений движения экзоскелета на основе разработанных рекуррентного и матричного методов записи дифференциальных уравнений движения экзоскелета. Проведено сопоставление времени составления дифференциальных уравнений движения предложенными методами, в сравнении с уравнениями Лагранжа второго рода, в системе компьютерной математики Mathematica. Осуществлено аналитическое исследование модели экзоскелета. Установлено, что для механизмов с $n$ подвижными звеньями решение задачи Коши для систем дифференциальных уравнений движения при любых начальных условиях существует, единственно и неограниченно продолжаемо. Управление экзоскелетом осуществляется с помощью крутящих моментов, расположенных в шарнирах-суставах в местах соединения звеньев и моделирующих управляющие воздействия. Выполнено численное исследование модели экзоскелета, проведено сопоставление результатов расчетов для экзоскелетов с различными моделями звеньев. Для численного исследования использованы эмпирические данные о человеке и его движениях. Установлено, что при выборе конструкции экзоскелета модель с сосредоточенными массами является предпочтительной, нежели модель с абсолютно твердым весомым стержнем, так как экзоскелет, обеспечивающий комфортабельные передвижения человека в нем, должен повторять свойства опорно-двигательного аппарата.
Ключевые слова: экзоскелет, звено переменной длины, шарнир-сустав, управление, дифференциальные уравнения движения, рекурсия, матрица, метод, интеграл энергии, численное решение.
New algorithms for composing differential equations of the motion of the exoskeleton with variable length of the links and the control of hinge-joint
Computer Research and Modeling, 2017, v. 9, no. 2, pp. 201-210Просмотров за год: 15. Цитирований: 2 (РИНЦ).The article discusses the model of the anthropomorphic type of mechanism of the exoskeleton with links of variable length. Four models of parts of variable length are considered comprehensively: the model link of the exoskeleton of variable length with a resilient member and a rigid strong core; the model of the telescopic link; the model link with the masses in the hinge-joint between them; the link model with an arbitrary number of masses. The differential equations of motion in the form of Lagrange equations of the second kind are made. On the basis of analysis of differential equations of motion for multi-link rod of a mechanical system type, exoskeleton revealed their structure, which allowed us to represent them in vector-matrix form. The General pattern of building matrices are established for the first time and the generalization of the expressions for elements of matrices in two-dimensional case are obtained. New recursive and matrix methods of composing of differential equations of motion are given. A unified approach to constructing differential equations of motion of the exoskeleton based on the developed recursive and matrix methods write differential equations of motion of the proposed exoskeleton. Comparison of the time of writing the differential equations of motion proposed methods, in comparison with the Lagrange equations of the second kind, in the system of computer mathematics Mathematica conducted. An analytical study of the model of the exoskeleton carried out. It was found that for mechanisms with n movable links of the Cauchy problem for systems of differential equations of motion for any initial conditions there is no single and unlimited continue. Control of the exoskeleton is accomplished using the torques which are located in the hinge-joints in the joints of the links and simulating control actions. Numerical investigation of a model of the exoskeleton is made, a comparison of results of calculations for exoskeletons with various models of units is held. A numerical study of the empirical evidence about the man and his movements is used. It is established that the choice structure of the exoskeleton model with lumped masses is more preferable to a model with perfectly rigid strong core. As an exoskeleton, providing comfortable movement of people, and you should repeat the properties of the musculoskeletal system.
-
Об одном подходе к имитационному моделированию спортивной игры с дискретным временем
Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 271-279В статье предлагается подход к имитационному моделированию спортивной игры, состоящей из дискретного набора отдельных поединков, основанный на рассмотрении матча как случайного процесса, в общем случае не являющегося марковским. Первоначально ход игры рассматривается как марковский процесс, на основании чего строятся рекуррентные соотношения между вероятностями достижения состояний теннисного матча, а также между вторичными показателями, такими как математическое ожидание и дисперсия числа розыгрышей, остающихся до завершения гейма. Затем, в рамках имитационной системы, моделирующей матч, мы позволяем произвольное изменение вероятностей исходов составляющих матч поединков, в том числе и в зависимости от результатов предыдущих. Данная работа посвящена модификации модели, ранее предлагавшейся авторами для спортивных игр с непрерывным временем.
Предлагаемый подход позволяет оценивать не только вероятность того или иного исхода матча, но и вероятности достижения каждого из возможных промежуточных результатов, а также вторичные показатели игры, такие как число таких отдельных поединков, потребовавшееся для завершения матча. Подробно изложено построение имитационной системы для гейма теннисного матча, по аналогии с которой осуществляется моделирование сета и всего матча. Доказано утверждение относительно справедливости правил подачи в теннисе, понимаемой в смысле отсутствия влиянии права первой подачи на исход матча. В качестве примера проведены моделирование и анализ планировавшейся, но не состоявшейся игры одного из турниров серии ATP. Получены наиболее вероятные промежуточные и окончательные результаты матча для трех сценариев хода игры.
Основным результатом данной работы является предлагаемая методика имитационного моделирования матча, применимая не только к теннису, но и к другим видам спортивных игр с дискретным временем.
Ключевые слова: математическое моделирование, имитационное моделирование, статистическое моделирование, спортивные соревнования.
On a possible approach to a sport game with discrete time simulation
Computer Research and Modeling, 2017, v. 9, no. 2, pp. 271-279Просмотров за год: 9.The paper proposes an approach to simulation of a sport game, consisting of a discrete set of separate competitions. According to this approach, such a competition is considered as a random processes, generally — a non-Markov’s one. At first we treat the flow of the game as a Markov’s process, obtaining recursive relationship between the probabilities of achieving certain states of score in a tennis match, as well as secondary indicators of the game, such as expectation and variance of the number of serves to finish the game. Then we use a simulation system, modeling the match, to allow an arbitrary change of the probabilities of the outcomes in the competitions that compose the match. We, for instance, allow the probabilities to depend on the results of previous competitions. Therefore, this paper deals with a modification of the model, previously proposed by the authors for sports games with continuous time.
The proposed approach allows to evaluate not only the probability of the final outcome of the match, but also the probabilities of reaching each of the possible intermediate results, as well as secondary indicators of the game, such as the number of separate competitions it takes to finish the match. The paper includes a detailed description of the construction of a simulation system for a game of a tennis match. Then we consider simulating a set and the whole tennis match by analogy. We show some statements concerning fairness of tennis serving rules, understood as independence of the outcome of a competition on the right to serve first. We perform simulation of a cancelled ATP series match, obtaining its most probable intermediate and final outcomes for three different possible variants of the course of the match.
The main result of this paper is the developed method of simulation of the match, applicable not only to tennis, but also to other types of sports games with discrete time.
-
Numerical Solution of Linear and Higher-order Delay Differential Equations using the Coded Differential Transform Method
Компьютерные исследования и моделирование, 2019, т. 11, № 6, с. 1091-1099The aim of the paper is to obtain a numerical solution for linear and higher-order delay differential equations (DDEs) using the coded differential transform method (CDTM). The CDTM is developed and applied to delay problems to show the efficiency of the proposed method. The coded differential transform method is a combination of the differential transform method and Mathematica software. We construct recursive relations for a few delay problems, which results in simultaneous equations, and solve them to obtain various series solution terms using the coded differential transform method. The numerical solution obtained by CDTM is compared with an exact solution. Numerical results and error analysis are presented for delay differential equations to show that the proposed method is suitable for solving delay differential equations. It is established that the delay differential equations under discussion are solvable in a specific domain. The error between the CDTM solution and the exact solution becomes very small if more terms are included in the series solution. The coded differential transform method reduces complex calculations, avoids discretization, linearization, and saves calculation time. In addition, it is easy to implement and robust. Error analysis shows that CDTM is consistent and converges fast. We obtain more accurate results using the coded differential transform method as compared to other methods.
Ключевые слова: delay differential equations, coded differential transform method, numerical solution, mathematica.
Numerical Solution of Linear and Higher-order Delay Differential Equations using the Coded Differential Transform Method
Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1091-1099The aim of the paper is to obtain a numerical solution for linear and higher-order delay differential equations (DDEs) using the coded differential transform method (CDTM). The CDTM is developed and applied to delay problems to show the efficiency of the proposed method. The coded differential transform method is a combination of the differential transform method and Mathematica software. We construct recursive relations for a few delay problems, which results in simultaneous equations, and solve them to obtain various series solution terms using the coded differential transform method. The numerical solution obtained by CDTM is compared with an exact solution. Numerical results and error analysis are presented for delay differential equations to show that the proposed method is suitable for solving delay differential equations. It is established that the delay differential equations under discussion are solvable in a specific domain. The error between the CDTM solution and the exact solution becomes very small if more terms are included in the series solution. The coded differential transform method reduces complex calculations, avoids discretization, linearization, and saves calculation time. In addition, it is easy to implement and robust. Error analysis shows that CDTM is consistent and converges fast. We obtain more accurate results using the coded differential transform method as compared to other methods.
-
Объединение агентного подхода и подхода общего равновесия для анализа влияния теневого сектора на российскую экономику
Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 669-684В предлагаемой публикации используется объединение оптимизационного подхода общего равновесия, позволяющего объяснить поведение спроса, предложения и цен в экономике с несколькими взаимодействующими рынками, и мультиагентного имитационного подхода, формализующего поведение домашних хозяйств. Интегрирование двух этих подходов рассматривается на примере динамической стохастической модели, включающей теневой, неформальный и сектор домашних хозяйств, производящих блага для собственного потребления. Синтеза гентного подхода и подхода общего равновесия осуществляется с помощью компьютерной реализации рекурсивной обратной связи между микроагентами и макросредой. В предлагаемом исследовании для реализации взаимодействия микроагентов с макросредой используется один из самых популярных подходов, аппроксимирующий распределение доходов индивидуальных агентов дискретным и конечным набором моментов. Особенностью алгоритма реализации рекурсивной обратной связи является получение индивидуальных поведенческих функций микроагентов при их взаимодействии с макросредой, имитационное моделирование с помощью метода Монте-Карло индивидуальных доходов всей совокупности агентов с последующей агрегацией доходов. Параметры модели оцениваются с помощью байесовской эконометрики на статистических данных экономики России. Исходя изс равнения функций правдоподобия, сделан вывод, что исследуемая модель с неоднородными агентами более адекватно описывает эмпирические данные российской экономики. Поведение функций импульсного отклика основных переменных модели свидетельствует об антициклическом характере политики, связанной с наличием теневых секторов экономики (включая неформальный сектор и сектор производства домохозяйств) во время рецессий. Важным фактором является также то, что индивидуальность в поведении агентов способствует повышению эластичности предложения труда в исследуемых секторах экономики. Научной новизной исследования является объединение мультиагентного подхода и подхода общего равновесия для моделирования макроэкономических процессов на региональном и национальном уровне. Перспективы дальнейших исследований могут быть связаны с моделированием и компьютерной реализацией большего числа источников гетерогенности, позволяющих, в частности, описать поведение неоднородных групп агентов в секторах, связанных с производством товаров и услуг.
Ключевые слова: гетерогенные агенты, ожидания, идиосинкратические шоки, агрегированная неопределенность, теневая экономика, неформальный сектор экономики, легальный сектор экономики, сектор домашних хозяйств, байесовский метод, общее экономическое равновесие.
Combining the agent approach and the general equilibrium approach to analyze the influence of the shadow sector on the Russian economy
Computer Research and Modeling, 2020, v. 12, no. 3, pp. 669-684This article discusses the influence of the shadow, informal and household sectors on the dynamics of a stochastic model with heterogeneous (heterogeneous) agents. The study uses the integration of the general equilibrium approach to explain the behavior of demand, supply and prices in an economy with several interacting markets, and a multi-agent approach. The analyzed model describes an economy with aggregated uncertainty and with an infinite number of heterogeneous agents (households). The source of heterogeneity is the idiosyncratic income shocks of agents in the legal and shadow sectors of the economy. In the analysis, an algorithm is used to approximate the dynamics of the distribution function of the capital stocks of individual agents — the dynamics of its first and second moments. The synthesis of the agent approach and the general equilibrium approach is carried out using computer implementation of the recursive feedback between microagents and macroenvironment. The behavior of the impulse response functions of the main variables of the model confirms the positive influence of the shadow economy (below a certain limit) on minimizing the rate of decline in economic indicators during recessions, especially for developing economies. The scientific novelty of the study is the combination of a multi-agent approach and a general equilibrium approach for modeling macroeconomic processes at the regional and national levels. Further research prospects may be associated with the use of more detailed general equilibrium models, which allow, in particular, to describe the behavior of heterogeneous groups of agents in the entrepreneurial sector of the economy.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"