Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Математические модели роста тромба на основе уравнений типа «адвекция–диффузия» и Фоккера–Планка
Компьютерные исследования и моделирование, 2014, т. 6, № 2, с. 271-283В работе рассмотрены модели формирования тромбоцитарного тромба в потоке плазмы крови в цилиндрическом сосуде, основанные на уравнении типа «адвекция–диффузия» и уравнении Фоккера–Планка. Приведено сравнение результатов расчетов на основе этих моделей. Рассмотренные модели демонстрируют качественно схожее поведение на начальном этапе формирования тромба. При детальном исследовании возникновения крупных сгустков необходимо уточнение моделей.
Ключевые слова: сдвиговая диффузия, тромбоциты, тромб, вязкая жидкость, уравнение Фоккера–Планка, «адвекция–диффузия».Просмотров за год: 2. -
Актуальные проблемы компьютерного моделирования тромбоза, фибринолиза и тромболизиса
Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 975-995Система гемостаза представляет собой одну из ключевых защитных систем организма, которая присутствует практически во всех его жидких тканях, но наиболее важна в крови. Она активируется при различных повреждениях стенки сосуда, и взаимодействие ее специализированных клеток и гуморальных систем приводит сначала к формированию гемостатического сгустка, останавливающего потерю крови, а затем к постепенному растворению этого сгустка. Образование гемостатического тромба — уникальный с точки зрения физиологии процесс, так как за время порядка минуты система гемостаза образует сложные структуры, имеющие пространственный масштаб от микрометров (в случае повреждения микрососудов или стыков между отдельными эндотелиальными клетками) до сантиметра (в случае повреждения крупных магистральных артерий). Гемостатический ответ зависит от множества скоординированных и параллельно идущих процессов, включающих адгезию тромбоцитов, их активацию, агрегацию, секрецию различных гранул, изменение формы, состава внешней части липидного бислоя, контракцию тромба и образование фибриновой сети в результате работы каскада свертывания крови. Компьютерное моделирование представляет собой мощный инструмент для исследования этой сложной системы и решения практических задач в этой области на разных уровнях организации: от внутриклеточной сигнализации в тромбоцитах, моделирования гуморальных систем свертывания крови и фибринолиза и до разработки многомасштабных моделей тромбообразования. Проблемы, связанные с компьютерным моделированием биологических процессов, можно разделить на две основные категории: отсутствие адекватного физико-математического описания имеющихся в литературе экспериментальных данных из-за сложности биологических систем (проблема отсутствия адекватной теоретической модели биологических процессов) и проблема высокой вычислительной сложности некоторых моделей, которая не позволяет применять их для исследования физиологически интересных сценариев. Здесь мы рассмотрим как некоторые принципиальные проблемы в области моделирования свертывания крови, которые до сих пор остаются нерешенными, так и прогресс в экспериментальных исследованиях гемостаза и тромбоза, ведущий к пересмотру многих ранее принятых представлений, что необходимо отразить в новых компьютерных моделях этих процессов. Особое внимание будет уделено нюансам артериального, венозного и микрососудистого тромбоза, а также проблемам фибринолиза и тромболизиса. В обзоре также кратко обсуждаются основные типы используемых математических моделей, их сложность с точки зрения вычислений, а также принципиальные вопросы, связанные с возможностью описания процессов тромбообразования в артериях.
Ключевые слова: гемостаз, тромбоз, компьютерное моделирование, фибринолиз, тромболизис, тромбоциты, тромбин, каскадсв ертывания. -
Исследование гидродинамической активации тромбоцитов в артериовенозных фистулах для гемодиализа
Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 703-721Методами математического моделирования изучена гидродинамическая активация тромбоцитов в артериовенозных фистулах, используемых для проведения гемодиализа. Цель работы — найти те конфигурации артериовенозных фистул, риск активации в которых снижен при типичных для фистул скоростей течения. В рамках развитого подхода условием гидродинамической активации считалось превышение кумулятивным напряжением сдвига определенного порога. Величина порога зависела от степени мультимерности макромолекул фактора фон Виллебранда, играющих роль гидродинамических сенсоров у тромбоцитов. В работе было изучено влияние ряда представляющих интерес параметров артериовенозных фистул, таких как величина анастомозного угла, интенсивность кровотока, а также мультимерность макромолекул фактора фон Виллебранда, на активацию тромбоцитов. Построены параметрические диаграммы, позволяющие выделять области параметров, соответствующие наличию или отсутствию гидродинамической активации тромбоцитов. Получены скейлинговые соотношения, характеризующие критические кривые на параметрических диаграммах. Анализ влияния величины анастомозного угла на гидродинамическую активацию тромбоцитов показал, что тупые анастомозные углы должны в меньшей мере приводить к активации, чем острые. Исследование различных типов соединения артерий и вен в артериовенозных фистулах показало, что к числу наиболее безопасных относится конфигурация «конец вены в конец артерии». Для всех исследованных конфигураций артериовенозных фистул критические кривые, разделяющие области на параметрических диаграммах, являются монотонно убывающими функциями от степени мультимерности фактора фон Виллебранда. Выяснилось, что интенсивность кровотока через фистульную вену оказывает существенное влияние на вероятность запуска тромбообразования, в то время как направление течения через дистальную артерию значимо не сказывается на активации тромбоцитов. Полученные результаты позволяют определять конфигурации фистул, наиболее безопасные с точки зрения запуска тромбообразования. Авторы полагают, что результаты работы могут представлять интерес для врачей, выполняющих хирургические операции по созданию артериовенозных фистул для гемодиализа. В заключении обсуждается ряд клинических приложений результатов.
-
Транспорт и адгезия тромбоцитов в условиях потока крови: роль эритроцитов
Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 185-200Просмотров за год: 3. Цитирований: 8 (РИНЦ).Система гемостаза служит организму для экстренного восстановления целостности стенок кровеносных сосудов при их повреждении. Главные компоненты этой системы – тромбоциты (самые маленькие клетки крови) – постоянно содержатся в крови и быстро адгезируют к месту повреждения. Миграция тромбоцитов поперёк потока крови и их попадание на место адгезии определяются характером течения крови и, в частности, физическим присутствием в крови других клеток – эритроцитов. В данном обзоре рассматриваются основные закономерности этого влияния и имеющиеся в литературе математические модели миграции тромбоцитов поперёк потока крови и их адгезии к стенке сосуда, основанные на дифференциальных уравнениях в частных производных вида «конвекция-диффузия». Обсуждаются недавние достижения в данной области. Понимание механизмов указанных процессов необходимо для построения адекватных математических моделей работы гемостатической системы в условиях потока крови в норме и патологии.
-
Редуцированная математическая модель свертывания крови с учетом переключения активности тромбина как основа оценки влияния гемодинамических эффектов и ее реализация в пакете FlowVision
Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 1039-1067Рассматривается возможность численного 3D-моделирования образования тромбов.
Известные детальные математические модели формирования тромбов включают в себя большое число уравнений. Для совмещения таких подробных математических моделей с гидродинамическими кодами для моделирования роста тромбов в кровотоке необходимы значительные вычислительные ресурсы. Разумной альтернативой представляется использование редуцированных математических моделей. В настоящей работе описаны две математические модели, основанные на редуцированной математической модели производства тромбина.
Первая модель описывает рост тромбоцитарного тромба в крупном сосуде (артерии). Течения в артериях существенно нестационарные, для артерий характерны пульсовые волны. Скорость течения крови в них велика по сравнению с венозным деревом. Редуцированная модель производства тромбина и тромбообразования в артериях относительно проста. Показано, что процессы производства тромбина хорошо описываются приближением нулевого порядка.
Для вен характерны более низкие скорости, меньшие градиенты и, как следствие, меньшие значения напряжений сдвига. Для моделирования производства тромбина в венах необходимо решать более сложную систему уравнений, учитывающую все нелинейные слагаемые в правых частях.
Моделирование проводится в индустриальном программном комплексе (ПК) FlowVision.
Проведенные тестовые расчеты показали адекватность редуцированных моделей производства тромбина и тромбообразования. В частности, расчеты демонстрируют формирование зоны возвратного течения за тромбом. За счет формирования такой зоны происходит медленный рост тромба в направлении вниз по потоку. В наветренной части тромба концентрация активных тромбоцитов мала, соответственно, рост тромба в направлении вверх по потоку незначителен.
При учете изменения течения в процессе сердечного цикла рост тромба происходит гораздо медленнее, чем при задании осредненных (по сердечному циклу) условий. Тромбин и активированные тромбоциты, наработанные во время диастолы, быстро уносятся потоком крови во время систолы. Заметный эффект оказывает учет неньютоновской реологии крови.
-
Использование продолженных систем ОДУ для исследования математических моделей свертывания крови
Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 931-951Многие свойства решений систем обыкновенных дифференциальных уравнений определяются свойствами системы в вариациях. Продолженной системой будем называть систему ОДУ, включающую в себя одновременно исходную нелинейную систему и систему уравнений в вариациях. При исследовании свойств задачи Коши для систем обыкновенных дифференциальных уравнений переход к продолженным системам позволяет исследовать многие тонкие свойства решений. Например, переход к продолженной системе позволяет повысить порядок аппроксимации численных методов, дает подходы к построению функции чувствительности без использования процедур численного дифференцирования, позволяет применять для решения обратной задачи методы повышенного порядка сходимости. Использован метод Бройдена, относящийся к классу квазиньютоновских методов. Для решения жестких систем обыкновенных дифференциальных уравнений применялся метод Розенброка с комплексными коэффициентами. В данном случае он эквивалентен методу второго порядка аппроксимации для продолженной системы.
В качестве примера использования подхода рассматривается несколько связанных между собой математических моделей свертывания крови. По результатам численных расчетов делается вывод о необходимости включения в систему уравнений описания петли положительных обратных связей по фактору свертывания XI. Приводятся оценки некоторых скоростей реакций на основе решения обратной задачи.
Рассматривается влияние освобождения фактора V при активации тромбоцитов. При модификации математической модели удалось достичь количественного соответствия по динамике производства тромбина с экспериментальными данными для искусственной системы. На основе анализа чувствительности проверена гипотеза об отсутствии влияния состава липидной мембраны (числа сайтов для тех или иных факторов системы свертывания, кроме сайтов для тромбина) на динамику процесса.
Ключевые слова: математические модели, система ОДУ, уравнение в вариациях, метод CROS, метод Бройдена, свертывание крови, тромбин, тромбоциты.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"