Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'вена':
Найдено статей: 4
  1. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 485-489
  2. Погорелова Е.А.
    Математическая модель сдвиговых течений в вене при наличии облитерирующего тромба
    Компьютерные исследования и моделирование, 2010, т. 2, № 2, с. 169-182

    Разработана численная модель распространения возмущений скорости тока крови и давления по кровеносному сосуду с тромбом, расположенным в точке венозной бифуркации, и их влияния на динамику тромба. Модель построена в акустическом (линейном) приближении. Результаты расчетов позволят определить условия возникновения резонансных колебаний тромба, которые могут привести к его отрыву и тромбоэмболии.

    Просмотров за год: 1.
  3. Салихова Т.Ю., Пушин Д.М., Гурия Г.Т.
    Исследование гидродинамической активации тромбоцитов в артериовенозных фистулах для гемодиализа
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 703-721

    Методами математического моделирования изучена гидродинамическая активация тромбоцитов в артериовенозных фистулах, используемых для проведения гемодиализа. Цель работы — найти те конфигурации артериовенозных фистул, риск активации в которых снижен при типичных для фистул скоростей течения. В рамках развитого подхода условием гидродинамической активации считалось превышение кумулятивным напряжением сдвига определенного порога. Величина порога зависела от степени мультимерности макромолекул фактора фон Виллебранда, играющих роль гидродинамических сенсоров у тромбоцитов. В работе было изучено влияние ряда представляющих интерес параметров артериовенозных фистул, таких как величина анастомозного угла, интенсивность кровотока, а также мультимерность макромолекул фактора фон Виллебранда, на активацию тромбоцитов. Построены параметрические диаграммы, позволяющие выделять области параметров, соответствующие наличию или отсутствию гидродинамической активации тромбоцитов. Получены скейлинговые соотношения, характеризующие критические кривые на параметрических диаграммах. Анализ влияния величины анастомозного угла на гидродинамическую активацию тромбоцитов показал, что тупые анастомозные углы должны в меньшей мере приводить к активации, чем острые. Исследование различных типов соединения артерий и вен в артериовенозных фистулах показало, что к числу наиболее безопасных относится конфигурация «конец вены в конец артерии». Для всех исследованных конфигураций артериовенозных фистул критические кривые, разделяющие области на параметрических диаграммах, являются монотонно убывающими функциями от степени мультимерности фактора фон Виллебранда. Выяснилось, что интенсивность кровотока через фистульную вену оказывает существенное влияние на вероятность запуска тромбообразования, в то время как направление течения через дистальную артерию значимо не сказывается на активации тромбоцитов. Полученные результаты позволяют определять конфигурации фистул, наиболее безопасные с точки зрения запуска тромбообразования. Авторы полагают, что результаты работы могут представлять интерес для врачей, выполняющих хирургические операции по созданию артериовенозных фистул для гемодиализа. В заключении обсуждается ряд клинических приложений результатов.

  4. Аксёнов А.А., Жлуктов С.В., Калугина М.Д., Каширин В.С., Лобанов А.И., Шаурман Д.В.
    Редуцированная математическая модель свертывания крови с учетом переключения активности тромбина как основа оценки влияния гемодинамических эффектов и ее реализация в пакете FlowVision
    Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 1039-1067

    Рассматривается возможность численного 3D-моделирования образования тромбов.

    Известные детальные математические модели формирования тромбов включают в себя большое число уравнений. Для совмещения таких подробных математических моделей с гидродинамическими кодами для моделирования роста тромбов в кровотоке необходимы значительные вычислительные ресурсы. Разумной альтернативой представляется использование редуцированных математических моделей. В настоящей работе описаны две математические модели, основанные на редуцированной математической модели производства тромбина.

    Первая модель описывает рост тромбоцитарного тромба в крупном сосуде (артерии). Течения в артериях существенно нестационарные, для артерий характерны пульсовые волны. Скорость течения крови в них велика по сравнению с венозным деревом. Редуцированная модель производства тромбина и тромбообразования в артериях относительно проста. Показано, что процессы производства тромбина хорошо описываются приближением нулевого порядка.

    Для вен характерны более низкие скорости, меньшие градиенты и, как следствие, меньшие значения напряжений сдвига. Для моделирования производства тромбина в венах необходимо решать более сложную систему уравнений, учитывающую все нелинейные слагаемые в правых частях.

    Моделирование проводится в индустриальном программном комплексе (ПК) FlowVision.

    Проведенные тестовые расчеты показали адекватность редуцированных моделей производства тромбина и тромбообразования. В частности, расчеты демонстрируют формирование зоны возвратного течения за тромбом. За счет формирования такой зоны происходит медленный рост тромба в направлении вниз по потоку. В наветренной части тромба концентрация активных тромбоцитов мала, соответственно, рост тромба в направлении вверх по потоку незначителен.

    При учете изменения течения в процессе сердечного цикла рост тромба происходит гораздо медленнее, чем при задании осредненных (по сердечному циклу) условий. Тромбин и активированные тромбоциты, наработанные во время диастолы, быстро уносятся потоком крови во время систолы. Заметный эффект оказывает учет неньютоновской реологии крови.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.