Текущий выпуск Номер 4, 2020 Том 12
Результаты поиска по 'течение крови':
Найдено статей: 9
  1. От редакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 139-142
    Просмотров за год: 2.
  2. Погорелова Е.А.
    Математическая модель сдвиговых течений в вене при наличии облитерирующего тромба
    Компьютерные исследования и моделирование, 2010, т. 2, № 2, с. 169-182

    Разработана численная модель распространения возмущений скорости тока крови и давления по кровеносному сосуду с тромбом, расположенным в точке венозной бифуркации, и их влияния на динамику тромба. Модель построена в акустическом (линейном) приближении. Результаты расчетов позволят определить условия возникновения резонансных колебаний тромба, которые могут привести к его отрыву и тромбоэмболии.

    Просмотров за год: 1.
  3. Трегубов В.П.
    Математическое моделирование неньютоновского потока крови в дуге аорты
    Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 259-269

    Целью проведенного исследования была разработка математической модели пульсирующего течения крови по участку аорты, включающему восходящий отдел, дугу аорты с ее ответвлениями и верхнюю часть нисходящего отдела. Поскольку при прохождении пульсовой волны деформации этой наиболее твердой части аорты малы, то при построении механической модели ее стенки считались абсолютно твердыми. В статье приводится описание внутренней структуры крови и ряда внутриструктурных эффектов. Этот анализ показывает, что кровь, которая по существу является суспензией, можно рассматривать только как неньютоновскую жидкость. Кроме того, кровь можно считать жидкостью только в кровеносных сосудах, диаметр которых намного больше характерного размера клеток крови и их агрегатных образований. В качестве неньютоновской жидкости была выбрана вязкая жидкость со степенным законом связи напряжения со скоростью деформации. Этот закон позволяет описывать поведение не только жидкостей, но и суспензий. При постановке граничного условия на входе в аорту, отражающего пульсирующий характер течения крови, было решено не ограничиваться заданием совокупного потока крови, который не дает представления о пространственном распределении скорости по поперечному сечению. В связи с этим было предложено моделировать огибающую поверхность этого пространственного распределения частью параболоида вращения с фиксированным радиусом основания и высотой, которая меняется во времени от нуля до максимального значения скорости. Для граничного условия на стенке сосуда предлагается использовать условие полупроскальзывания. Это связано с тем, что клетки крови, в силу своих электрохимических свойств, не прилипают к внутреннему слою сосуда. На внешних концах аорты и ее ответвлений задавалась величина давления. Для выполнения вычислений была построена геометрическая модель рассматриваемой части аорты с ответвлениями, на которую была нанесена тетраэдальная сетка с общим числом элементов 9810. Вычисления производились методом конечных элементов с шагом по времени 0.01 с с использованием пакета ABAQUS. В результате было получено распределение скоростей и давления на каждом шаге по времени. В областях ветвления сосудов было обнаружено вре́менное наличие вихрей и обратных течений. Они зарождались через 0.47 с от начала пульсового цикла и исчезали спустя 0.14 с.

    Просмотров за год: 13.
  4. Аристов В.В., Ильин О.В.
    Методы и задачи кинетического подхода для моделирования биологических структур
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 851-866

    Биологическая структура рассматривается как открытая неравновесная система, свойства которой могут быть описаны на основе кинетических уравнений. Ставятся новые задачи с неравновесными граничными условиями на границе, причем неравновесное состояние (распределение) преобразуется постепенно в равновесное состояние вниз по течению. Область пространственной неоднородности имеет масштаб, зависящий от скорости переноса вещества в открытой системе и характерного времени метаболизма. В предлагаемом приближении внутренняя энергия движения молекул много меньше энергии поступательного движения; в других терминах: кинетическая энергия средней скорости крови существенно выше, чем энергия хаотического движения частиц в крови. Задача о релаксации в пространстве моделирует живую систему, поскольку сопоставляет области термодинамической неравновесности и неоднородности. Поток энтропии в изучаемой системе уменьшается вниз по потоку, что соответствует общим идеям Э. Шрёдингера о том, что живая система «питается» негэнтропией. Вводится величина, определяющая сложность биосистемы, — это разность между величинами неравновесной кинетической энтропии и равновесной энтропией в каждой пространственной точке, затем проинтегрированная по всему пространству. Решения задач о пространственной релаксации позволяют высказать суждение об оценке размера биосистем в целом как областей неравновесности. Результаты сравниваются с эмпирическими данными, в частности для млекопитающих (размеры животных тем больше, чем меньше удельная энергия метаболизма). Что воспроизводится в предлагаемой кинетической модели, поскольку размеры неравновесной области больше в той системе, где меньше скорость реакции, или в терминах кинетического подхода – чем больше время релаксации характерного взаимодействия между молекулами. Подход применяется для обсуждения характеристик и отдельного органа живой системы, а именно зеленого листа. Рассматриваются проблемы старения как деградации открытой неравновесной системы. Аналогия связана со структурой: для замкнутой системы происходит стремление к равновесию структуры для одних и тех же молекул, в открытой системе происходит переход к равновесию частиц, которые меняются из-за метаболизма. Соответственно, выделяются два существенно различных масштаба времени, отношение которых является приблизительно постоянным для различных видов животных. В предположении существования двух этих временных шкал кинетическое уравнение расщепляется на два уравнения, описывающих метаболическую (стационарную) и «деградационную» (нестационарную) части процесса.

    Просмотров за год: 31.
  5. Атеросклеротические заболевания, такие как атеросклероз сонной артерии и хронические болезни почек, являются основными причинами смерти во всем мире. Возникновение таких атеросклеротических болезней в артериях зависит от сложной динамики кровотока и ряда гемодинамических параметров. Атеросклероз почечных артерий приводит к уменьшению артериальной эффективности и в конечном счете приводит к почечной артериальной гипертензии. В данной работе делается попытка определить локализацию атеросклеротической бляшки в брюшной аорте человека в окрестности соединения с почечной артерией с использованием средств вычислительной гидродинамики (CFD).

    Области, подверженные атеросклерозу, в идеализированном соединении брюшной аорты и почечной артерии человека определяются в результате вычислений некоторых гемодинамических показателей. При вычислениях используется точная реологическая модель крови человека, предложенная Yeleswarapu. Кровоток вычисляется в трехмерной модельной области соединения артерий с использованием пакета ANSYS FLUENT v18.2.

    Вычисленные гемодинамические показатели представляют собой среднее значение напряжения сдвига на стенке сосуда (AWSS), колебательный сдвиговый индекс (OSI) и относительное время задержки (RRT). Моделирование пульсирующего течения (f = 1.25 Гц, Re = 1000) показывает, что малое значение AWSS и высокий индекс OSI возникают в областях почечной артерии вниз по течению от соединения и в инфраренальном отделе брюшной аорты вблизи соединения. Высокий RRT, который является относительным индексом и зависит как от AWSS, так и OSI, как показано в данной работе, сочетается с низким AWSS и высоким OSI в краниальной части поверхности почечной артерии, проксимальной около соединения и на латеральной поверхности вблизи бифуркации брюшной аорты: это указывает, что эти области наиболее всего подвержены атеросклерозу. Результаты качественно соответствуют литературным данным. Они могут служить начальным этапом исследований и иллюстрировать пользу средств вычислительной гидродинамики (CFD) для определения местоположения атеросклеротической бляшки.

    Просмотров за год: 3.
  6. В работе рассмотрено приложение методов кинетической теории к задачам гемодинамики. Для моделирования выбраны решеточные уравнения Больцмана. Данные модели описывают дискретизированную по пространственной и временной координате динамику движения частиц на одномерной решетке. Хорошо известно, что в пределе малых длин свободного пробега решеточные уравнения Больцмана описывают уравнения гидродинамики. Если течение достаточно медленное (мало число Маха), то данные уравнения гидродинамики переходят в уравнения Навье – Стокса для сжимаемого газа. Если в получающихся гидродинамических уравнениях переменные, отвечающие плотности и скорости звука, считать площадью поперечного сечения сосуда и скоростью распространения пульсовой волны давления, то выводятся хорошо известные в биомеханике нелинейные уравнения распространения несжимаемой вязкой жидкости (крови) в эластичном сосуде для частного случая постоянной пульсовой скорости.

    В общем случае скорость распространения пульсовой волны зависит от площади просвета сосуда. Следует отметить интересную аналогию: уравнение состояния решеточного газа в новых переменных становится законом, связывающим давление и площадь поперечного сечения сосуда. Таким образом, в общем случае требуется модифицировать уравнение состояния для решеточного уравнения Больцмана. Данная процедура хорошо известна в теории неидеального газа и многофазных течений и эквивалентна введению в уравнения виртуальной силы. Получающиеся уравнения могут использоваться для моделирования любых законов, связывающих скорость пульсовой волны и площадь просвета сосуда.

    В качестве тестовых задач рассмотрено распространение уединенной нелинейной пульсовой волны в сосуде с упругими свойствами, описываемыми законом Лапласа. Во второй задаче рассмотрено распространение пульсовых волн для бифуркации сосудов. Показано, что результаты расчетов хорошо совпадают с данными из предыдущих исследований.

    Просмотров за год: 2.
  7. Ильин О.В.
    Граничные условия для решеточных уравнений Больцмана в приложениях к задачам гемодинамики
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 865-882

    Рассматривается одномерная трехскоростная кинетическая решеточная модель уравнения Больцмана, которая в рамках кинетической теории описывает распространение и взаимодействие частиц трех типов. Данная модель представляет собой разностную схему второго порядка для уравнений гидродинамики. Ранее было показано, что одномерная кинетическая решеточная модель уравнения Больцмана с внешней силой в пределе малых длин свободного пробега также эквивалентна одномерным уравнениям гемодинамики для эластичных сосудов, эквивалентность можно установить, используя разложение Чепмена – Энскога. Внешняя сила в модели отвечает за возможность регулировки функциональной зависимости между площадью просвета сосуда и приложенного к стенке рассматриваемого сосуда давления. Таким образом, меняя форму внешней силы, можно моделировать практически произвольные эластичные свойства стенок сосудов. В настоящей работе рассмотрены постановки физиологически интересных граничных условий для решеточных уравнений Больцмана в приложениях к задачам течения крови в сети эластичных сосудов. Разобраны следующие граничные условия: для давления и потока крови на входе сосудистой сети, условия для давления и потоков крови в точке бифуркации сосудов, условия отражения (соответствуют полной окклюзии сосуда) и поглощения волн на концах сосудов (эти условия соответствуют прохождению волны без искажений), а также условия типа RCR, представляющие собой схему, аналогичную электрическим цепям и состоящую из двух резисторов (соответствующих импедансу сосуда, на конце которого ставятся граничные условия, а также силам трения крови в микроциркуляторном русле) и одного конденсатора (описывающего эластичные свойства артериол). Проведено численное моделирование, рассмотрена задача о распространении крови в сети из трех сосудов, на входе сети ставятся условияна входящий поток крови, на концах сети ставятсяу словия типа RCR. Решения сравниваются с эталонными, в качестве которых выступают результаты численного счета на основе разностной схемы Маккормака второго порядка (без вязких членов), показано, что оба подхода дают практически идентичные результаты.

  8. Рухленко А.С., Злобина К.Е., Гурия Г.Т.
    Гидродинамическая активация свертывания крови в стенозированных сосудах. Теоретический анализ
    Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 155-183

    В настоящей работе исследованы гидродинамические механизмы активации плазменного звена системы свертывания крови при числах Рейнольдса в интервале от 10 до 500. Условия активации изучены в рамках модели, предполагающей, что проницаемость сосудистых стенок по отношению к первичным активаторам системы свертывания крови возрастает с увеличением касательного напряжения. Обнаружено несколько характерных сценариев развития процессов тромбообразования. Изучено влияние изменения топологии течения на активацию внутрисосудистого свертывания крови. Установлено, что пороговая активация плазменного звена системы гемостаза в стенозированных сосудах может иметь место не только при ослаблении, но и при интенсификации кровотока. В заключительной части работы обсуждены возможные медицинские приложения полученных результатов.

    Просмотров за год: 2. Цитирований: 5 (РИНЦ).
  9. Токарев А.А., Бутылин А.А., Атауллаханов Ф.И.
    Транспорт и адгезия тромбоцитов в условиях потока крови: роль эритроцитов
    Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 185-200

    Система гемостаза служит организму для экстренного восстановления целостности стенок кровеносных сосудов при их повреждении. Главные компоненты этой системы – тромбоциты (самые маленькие клетки крови) – постоянно содержатся в крови и быстро адгезируют к месту повреждения. Миграция тромбоцитов поперёк потока крови и их попадание на место адгезии определяются характером течения крови и, в частности, физическим присутствием в крови других клеток – эритроцитов. В данном обзоре рассматриваются основные закономерности этого влияния и имеющиеся в литературе математические модели миграции тромбоцитов поперёк потока крови и их адгезии к стенке сосуда, основанные на дифференциальных уравнениях в частных производных вида «конвекция-диффузия». Обсуждаются недавние достижения в данной области. Понимание механизмов указанных процессов необходимо для построения адекватных математических моделей работы гемостатической системы в условиях потока крови в норме и патологии.

    Просмотров за год: 3. Цитирований: 8 (РИНЦ).

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал входит в Перечень российских рецензируемых научных журналов, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученых степеней доктора и кандидата наук ВАК, группы специальностей: 01.01.00, 01.02.00.
 

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал индексируется в Scopus