Текущий выпуск Номер 2, 2024 Том 16

Все выпуски

Результаты поиска по 'тепловой процесс':
Найдено статей: 23
  1. Ступицкий Е.Л., Андрущенко В.А.
    Физические исследования, численное и аналитическое моделирование взрывных явлений. Обзор
    Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 505-546

    В данном обзоре рассмотрен широкий круг явлений и задач, связанных с взрывом. Подробные численные исследования позволили обнаружить интересный физический эффект — образование дискретных вихревых структур сразу за фронтом ударной волны, распространяющейся в плотных слоях неоднородной атмосферы. Показана необходимость дальнейшего исследования такого рода явлений и определения степени их связи с возможным развитием газодинамической неустойчивости. Дан краткий анализ многочисленных работ по тепловому взрыву метеороидов при их высокоскоростном движении в атмосфере Земли. Большое внимание уделено разработке численного алгоритма для расчета одновременного взрыва нескольких фрагментов метеороидов и проанализированы особенности развития такого газодинамического течения. Показано, что разработанные раннее алгоритмы для расчета взрывов могут успешно использоваться для исследования взрывных вулканических извержений. В работе представлены и обсуждаются результаты таких исследований как для континентальных, так и для подводных вулканов с определенными ограничениями на условия вулканической активности.

    В работе выполнен математический анализ и представлены результаты аналитических исследований ряда важных физических явлений, характерных для взрывов высокой удельной энергии в ионосфере. Показано, что принципиальное значение для разработки достаточно полных и адекватных теоретических и численных моделей таких сложных явлений, как мощные плазменные возмущения в ионосфере, имеет предварительное лабораторное физическое моделирование основных процессов, определяющих эти явления. Показано, что наиболее близким объектом для такого моделирования является лазерная плазма. Приведены результаты соответствующих теоретических и экспериментальных исследований и показана их научная и практическая значимость. Дан краткий обзор работ последних лет по использованию лазерного излучения для лабораторного физического моделирования процессов воздействия ядерного взрыва на астроидные материалы.

    В результате выполненного в обзоре анализа удалось выделить и предварительно сформулировать некоторые интересные и весомые в научном и прикладном отношении вопросы, которые необходимо исследовать на основе уже полученных представлений: это мелкодисперсные химически активные системы, образующиеся при выбросе вулканов; маломасштабные вихревые структуры; генерация спонтанных магнитных полей из-за развития неустойчивости и их роль в трансформации энергии плазмы при ее разлете в ионосфере. Важное значение имеет также вопрос об исследовании возможного лабораторного физического моделирования теплового взрыва тел при воздействии высокоскоростного плазменного потока, который до настоящего времени имеет лишь теоретические толкования.

  2. Нефедова О.А., Спевак Л.Ф., Казаков А.Л., Ли М.Г.
    Применение метода нулевого поля для решения двумерного нелинейного уравнения теплопроводности
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1449-1467

    В работе рассмотрена краевая задача о движении тепловой волны для вырождающегося уравнения второго порядка параболического типа со степенной нелинейностью. Краевое условие задает уравнение движения на плоскости нулевого фронта тепловой волны, имеющего форму окружности. Предложен новый численно-аналитический алгоритм, в соответствии с которым решение строится по шагам по времени при разностной схеме дискретизации времени. На каждом шаге рассматривается краевая задача для уравнения Пуассона, к которому сводится исходное уравнение. Фактически она является обратной задачей Коши, в которой исходная граница области решения свободна от граничных условий, а на текущей границе (фронте волны) заданы два условия (Неймана и Дирихле). Решение этой задачи ищется в виде суммы частного решения уравнения Пуассона и решения соответствующего уравнения Лапласа, удовлетворяющего граничным условиям. Поскольку неоднородность зависит от искомой функции и ее производных, решение строится итерационно. Частное решение ищется методом коллокаций с помощью разложения неоднородности по радиальным базисным функциям. Обратная задача Коши для уравнения Лапласа решается методом нулевого поля применительно к круговым областям с круговыми отверстиями. Для таких задач этот метод применяется впервые. Вычислительный алгоритм оптимизирован за счет распараллеливания вычислений. Распараллеливание вычислений позволило эффективно реализовать алгоритм на высокопроизводительных вычислительных системах. На базе алгоритма была создана компьютерная программа. В качестве средства распараллеливания был выбран стандарт параллельного программирования OpenMP для языка программирования C++ как наиболее подходящий для вычислительных программ с параллельными циклами. Эффективность алгоритма и работоспособность программы были проверены сравнением результатов расчетов с известным точным решением, а также с численным решением, полученным авторами ранее с помощью метода граничных элементов. Проведенный вычислительный эксперимент показал хорошую сходимость итерационных процессов и более высокую точность нового алгоритма по сравнению с разработанным ранее. Анализ решений позволил определить наиболее подходящую систему радиальных базисных функций.

  3. Иванков А.А., Финченко В.С.
    Численное исследование теплового разрушения метеорита «Челябинск» при входе в атмосферу Земли
    Компьютерные исследования и моделирование, 2013, т. 5, № 6, с. 941-956

    Представлена математическая модель для численного исследования теплового разрушения метеорита «Челябинск» при входе в атмосферу Земли. Исследование проводилось в рамках комплексного подхода, включающего расчет траектории движения с учетом сопутствующих движению метеорита физических процессов. Вместе с траекторией определялось поле течения и лучисто-конвективный теплообмен, определялся прогрев и разрушение метеорита под действием рассчитанных тепловых нагрузок. Комплексный подход позволяет точнее определять траекторию движения космических объектов, предсказывать зоны их падения и разрушения.

    Цитирований: 4 (РИНЦ).
  4. Карабан В.М., Сухоруков М.П., Морозов Е.А.
    Программная реализация трехмерного моделирования тепловых процессов в многослойных интегральных схемах космического назначения
    Компьютерные исследования и моделирование, 2014, т. 6, № 3, с. 397-403

    В данной работе рассматривается программная реализация трехмерного моделирования тепловых процессов в многослойных интегральных схемах на основе низкотемпературной совместно обжигаемой керамики. Приведены результаты, полученные с помощью реализованного программного обеспечения на примере радиочастотного приемного модуля на основе низкотемпературной керамики для системы автономной навигации. А также приведено сравнение полученных результатов с результатами сертифицированного программного продукта.

    Просмотров за год: 4. Цитирований: 1 (РИНЦ).
  5. Работа посвящена проблеме создания модели со стационарными параметрами по ретроспективным данным в условиях неизвестных возмущений. Рассматривается случай, когда представительная выборка состояний объекта может быть сформирована с использованием ретроспективных данных, накопленных только в течение значительного интервала времени. При этом допускается, что неизвестные возмущения могут действовать в широком частотном диапазоне и могут иметь низкочастотные и трендовые составляющие. В такой ситуации включение в выборку данных разных временных периодов может привести к противоречиям и чрезвычайно снизить точность модели. В работе дан обзор подходов и способов согласования данных. При этом основное внимание уделено отбору данных. Дана оценка применимости различных вариантов отбора данных как инструмента снижения уровня неопределенности. Предложен метод идентификации модели объекта с самовыравниванием по данным, накопленным за значительный период времени в условиях неизвестных возмущений с широким частотным диапазоном. Метод ориентирован на создание модели со стационарными параметрами, не требующей периодической перенастройки под новые условия. Метод основан на совместном применении отбора данных и представлении данных отдельных периодов времени в виде приращений относительно начального для периода момента времени. Это позволяет уменьшить число параметров, которые характеризуют неизвестные возмущения при минимуме допущений, ограничивающих применение метода. В результате снижается размерность поисковой задачи и минимизируются вычислительные затраты, связанные с настройкой модели. Рассмотрены особенности применения метода при нелинейной модели. Метод использован при разработке модели закрытого охлаждения стали на агрегате непрерывного горячего оцинковании стальной полосы. Модель может использоваться при упреждающем управлении тепловыми процессами и при выборе скорости движения полосы. Показано, что метод делает возможным разработку модели тепловых процессов с секции закрытого охлаждения в условиях неизвестных возмущений, имеющих в том числе низкочастотные составляющие.

  6. Математическое и компьютерное моделирование тепловых процессов в технических системах, проводимое в настоящее время, основано на допущении, согласно которому все параметры, определяющие тепловые процессы, полностью и однозначно известны и определены, то есть являются детерминированными. Между тем практика показывает, что параметры, определяющие тепловые процессы, носят неопределенный интервально стохастический характер, что, в свою очередь, обусловливает интервально стохастический характер тепловых процессов в технической системе. Это означает, что реальные значения температуры каждого элемента в технической системе будут случайным образом распределены внутри интервалов своего изменения. Поэтому детерминированный подход к моделированию тепловых процессов, при котором получаются конкретные значения температур элементов, не позволяет адекватно рассчитывать температурные распределения в технических системах. Интервально стохастический характер параметров, определяющих тепловые процессы, обусловливается тремя группами факторов: (a) статистическим технологическим разбросом параметров элементов при изготовлении и сборке системы; (b) случайным характером факторов, обусловленных функционированием технической системы (флуктуациями токов, напряжений, мощностями потребления, температурами и скоростями потоков охлаждающей жидкости и среды внутри системы; (c) случайностью параметров окружающей среды (температурой, давлением, скоростью). Интервально стохастическая неопределенность определяющих факторов в технических системах является неустранимой, поэтому пренебрежение ею приводит к ошибкам при проектировании технических систем. В статье развивается метод, позволяющий моделировать нестационарные нелинейные интервально стохастические тепловые процессы в технических и, в частности, электронных системах при интервальной неопределенности определяющих параметров. Метод основан на получении и последующем решении уравнений для нестационарных статистических мер (математических ожиданий, дисперсий, ковариаций) распределений температуры в технической системе при заданных интервалах изменения и статистических мерах определяющих параметров. Рассмотрено применение разработанного метода к моделированию интервально стохастического теплового процесса в конкретной электронной системе.

    Просмотров за год: 15. Цитирований: 6 (РИНЦ).
  7. Колдоба А.В., Скалько Ю.И.
    Численное моделирование распространения прямоточных волн внутрипластового горения в инверсном режиме
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 993-1006

    Одной из перспективных технологий повышения нефтеотдачи при разработке нетрадиционных нефтяных пластов является метод термогазового воздействия. Метод основан на закачке в пласт кислородосодержащей смеси и ее трансформации в высокоэффективный смешивающийся с пластовой нефтью вытесняющий агент за счет самопроизвольных внутрипластовых окислительных процессов. В ряде случаев этот метод обладает большим потенциалом по сравнению с другими способами повышения нефтеотдачи. В данной работе рассматриваются некоторые вопросы распространения волн внутрипластового горения. В зависимости от параметров коллектора и закачиваемой смеси такие волны могут распространяться в различных режимах. В данной работе рассматривается только прямоточный инверсный режим распространения. В этом режиме волна горения распространяется в направлении течения окислителя и фронт реакции отстает от тепловой волны, в которой вещество (углеводородные фракции, пористый скелет и др.) прогреваются до температур, достаточных для протекания реакции окисления. В работе представлены результаты аналитического исследования и численного моделирования структуры инверсной волны внутрипластового горения при двухфазном течении в пористом слое. Сделаны упрощающие предположения о теплофизических свойствах флюидных фаз, которые позволяют, с одной стороны, сделать модель внутрипластового горения обозримой для анализа, а с другой — передать основные особенности этого процесса. Рассмотрено решение типа «бегущая волна» и указаны условия его реализации. Выделено два режима распространения инверсных волн внутрипластового горения: гидродинамический и кинетический. Численное моделирование распространения волны внутрипластового горения проводилось с помощью термогидродинамического симулятора, разработанного для численного интегрирования неизотермических многокомпонентных фильтрационных течений, сопровождающихся фазовыми переходами и химическими реакциями.

  8. Представлены результаты компьютерного моделирования нестационарных температурных полей, возникающих в полярных диэлектриках, облученных сфокусированными электронными пучками средних энергий, при исследовании с помощью методик растровой электронной микроскопии. Математическая модель основана на решении многомерного эволюционного уравнения теплопроводности численным конечноэлементным методом. Аппроксимация теплового источника проведена с учетом оценки области взаимодействия электронов с веществом на основе симуляции электронных траекторий методом Монте-Карло. Разработано программное приложение в ППП Маtlab, реализующее данную модель. Приведены геометрические интерпретации и результаты расчётов, демонстрирующие особенности температурного нагрева модельных образцов электронным зондом, при заданных параметрах эксперимента и принятой аппроксимации источника.

    Просмотров за год: 5. Цитирований: 3 (РИНЦ).
  9. Мадера А.Г.
    Моделирование воздействия тепловой обратной связи на тепловые процессы в электронных системах
    Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 483-494

    Статья посвящена эффекту тепловой обратной связи, возникающему при функционировании интегральных микросхем и электронных систем, использующих микросхемы. Тепловая обратная связь обусловливается тем, что потребляемая при функционировании микросхемы мощность нагревает ее и, в силу значительной зависимости ее электрических параметров от температуры, между ее электрическими и тепловыми процессами возникает интерактивное взаимодействие. Воздействие тепловой обратной связи приводит к изменению как электрических параметров, так и уровней температуры в микросхемах. Положительная тепловая обратная связь представляет собой нежелательное явление, поскольку является причиной выхода электрических параметров микросхем за пределы допустимых значений, снижения надежности и, в ряде случаев, выгорания. Отрицательная тепловая обратная связь проявляется в стабилизации электрического и теплового режимов при пониженных уровнях температуры. Поэтому при проектировании микросхем и электронных систем с их применением необходимо добиваться реализации отрицательной обратной связи. В настоящей работе предлагается метод моделирования теплового режима электронных систем с учетом воздействия тепловой обратной связи. Метод основан на введении в тепловую модель электронной системы новых модельных схемных элементов, нелинейно зависящих от температуры, количество которых равно количеству микросхем в электронной системе. Такой подход позволяет применять к тепловой модели с введенными в нее новыми схемными элементами матрично-топологические уравнения тепловых процессов и включать их в существующие программные комплексы теплового проектирования. Приведен пример моделирования теплового процесса в реальной электронной системе с учетом воздействия тепловой обратной связи на примере микросхемы, установленной на печатной плате. Показано, что для адекватного моделирования электрических и тепловых процессов микросхем и электронных систем необходимо во избежание ошибок проектирования и создания конкурентоспособных электронных систем учитывать воздействие тепловой обратной связи.

    Просмотров за год: 22. Цитирований: 3 (РИНЦ).
  10. В работе разработан кластерный метод математического моделирования интервально-стохастических тепловых процессов в сложных технических, в частности электронных, системах (ЭС). В кластерном методе конструкция сложной ЭС представляется в виде тепловой модели, являющейся системой кластеров, каждый из которых содержит ядро, объединяющее в себе тепловыделяющие элементы, попадающие в данный кластер, оболочку кластера и поток среды, протекающий через кластер. Состояние теплового процесса в каждом кластере и в каждый момент времени характеризуется тремя интервально-стохастическими переменными состояния, а именно температурами ядра, оболочки и потока среды. При этом элементы каждого кластера, а именно ядро, оболочка и поток среды, находятся в тепловом взаимодействии между собой и элементами соседних кластеров. В отличие от существующих методов кластерный метод позволяет моделировать тепловые процессы в сложных ЭС с учетом неравномерного распределения температуры в потоке среды нагнетаемой в ЭС, сопряженного характера теплообмена между пото- ком среды в ЭС, ядрами и оболочками кластеров и интервально-стохастического характера тепловых процессов в ЭС, вызванного статистическим технологическим разбросом изготовления и монтажа электронных элементов в ЭС, и случайными флуктуациями тепловых параметров окружающей среды. Математическая модель, описывающая состояния тепловых процессов в кластерной тепловой модели, представляет собой систему интервально-стохастических матрично-блочных уравнений с матричными и векторными блоками, соответствующими кластерам тепловой модели. Решением интервально-стохастических уравнений являются статистические меры переменных состояния тепловых процессов в кластерах — математические ожидания, ковариации между переменными состояния и дисперсии. Методика применения кластерного метода показана на примере реальной ЭС.

Страницы: предыдущая следующая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.