Текущий выпуск Номер 4, 2020 Том 12
Результаты поиска по 'дифференциальные уравнения':
Найдено статей: 77
  1. Представлены два алгоритма проведения непрерывного вейвлет-преобразования с вейвлетом Морле. Первый представляет собой решение системы дифференциальных уравнений в частных производных, в которой преобразуемый сигнал играет роль начальных условий. Второй позволяет исследовать влияние базисной частоты путем диффузионного сглаживания начальных данных, модулированных гармоническими функциями. Эти подходы проиллюстрированы анализом хаотических колебаний связанных систем Ресслера.

    Просмотров за год: 5. Цитирований: 3 (РИНЦ).
  2. Яковенко Г.Н.
    Причины нелинейности: глобальность и некоммутативность
    Компьютерные исследования и моделирование, 2009, т. 1, № 4, с. 355-358

    Динамический процесс моделируется обыкновенными дифференциальными уравнениями. Если у неавтономной системы обыкновенных дифференциальных уравнений в некоторой области существует общее решение, то неавтономной заменой переменных система максимально упрощается: правые части - нули. У автономной системы обыкновенных дифференциальных уравнений в окрестности неособой точки правая часть выпрямляется. Рассмотрен случай сепарабельной системы: в правой части линейная комбинация автономных векторных полей, коэффициенты - функции независимой переменной. Если поля коммутируют, то они общей заменой переменных выпрямляются.

    Просмотров за год: 3.
  3. Малинецкий Г.Г., Фаллер Д.С.
    Переход к хаосу в системах «реакция–диффузия». Простейшие модели
    Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 3-12

    В работе рассматривается появление хаотических аттракторов в системе трех обыкновенных дифференциальных уравнений, возникающих в теории систем «реакция–диффузия». Исследуются динамика соответствующих одномерных и двумерных отображений и ляпуновские показатели возникающих аттракторов. Показано, что переход к хаосу происходит по нетрадиционному сценарию, связанному с многократным рождением и исчезновением хаотических режимов, который ранее был изучен для одномерных отображений с острой вершиной и квадратичным минимумом. С помощью численного анализа были исследованы характерные особенности системы: наличие областей бистабильности и гиперболичности, кризис хаотических аттракторов.

    Просмотров за год: 6. Цитирований: 1 (РИНЦ).
  4. Башашин М.В., Земляная Е.В., Рахмонов И.Р., Шукринов Ю.М., Атанасова П.Х., Волохова А.В.
    Вычислительная схема и параллельная реализация для моделирования системы длинных джозефсоновских переходов
    Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 593-604

    Рассматривается модель стека длинных джозефсоновских переходов (ДДП), состоящего из чередующихся сверхпроводящих слоев и слоев диэлектрика, с учетом индуктивной и емкостной связи между слоями. Модель описывается системой нелинейных дифференциальных уравнений в частных производных относительно разности фаз и напряжения между соседними сверхпроводящими слоями в стеке ДДП, с соответствующими начальными и граничными условиями. Численное решение этой системы уравнений основано на использовании стандартных трехточечных конечно-разностных формул для дискретной аппроксимации по пространственной координате и применении четырехшагового метода Рунге–Кутты для решения полученной задачи Коши. Разработанный параллельный алгоритм реализован на основе технологии MPI (Message Passing Interface). В работе дана математическая постановка задачи в рамках рассматриваемой модели, описаны вычислительная схема и методика расчета вольт-амперных характеристик системы ДДП, представлены два варианта параллельной реализации. Продемонстрировано влияние индуктивной и емкостной связи между ДДП на структуру вольт-амперной характеристики в рамках рассматриваемой модели. Представлены результаты методических расчетов с различными параметрами длины и количества джозефсоновских переходов в стеке ДДП в зависимости от количества задействованных параллельных вычислительных узлов. Расчеты выполнены на многопроцессорных кластерах HybriLIT и ЦИВК Многофункционального информационно-вычислительного комплекса Лаборатории информационных технологий Объединенного института ядерных исследований (Дубна). На основе полученных численных результатов обсуждается эффективность рассмотренных вариантов распределения вычислений для численного моделирования системы ДДП в параллельном режиме. Показано, что один из предложенных подходов приводит к ускорению вычислений до 9 раз по сравнению с расчетами в однопроцессорном режиме.

    Просмотров за год: 7. Цитирований: 6 (РИНЦ).
  5. От редакции
    Компьютерные исследования и моделирование, 2016, т. 8, № 5, с. 719-720
    Просмотров за год: 1.
  6. От редакции
    Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 831-832
    Просмотров за год: 2.
  7. От редакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 139-142
    Просмотров за год: 2.
  8. От редакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 357-359
    Просмотров за год: 3.
  9. От редакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 853-855
    Просмотров за год: 6.
  10. От редакции
    Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 163-164
    Просмотров за год: 6.
Страницы: следующая последняя »

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал входит в Перечень российских рецензируемых научных журналов, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученых степеней доктора и кандидата наук ВАК, группы специальностей: 01.01.00, 01.02.00.
 

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал индексируется в Scopus