Текущий выпуск Номер 1, 2024 Том 16

Все выпуски

Результаты поиска по 'тепловой поток':
Найдено статей: 15
  1. От редакции
    Компьютерные исследования и моделирование, 2018, т. 10, № 1, с. 3-5
    Просмотров за год: 10.
  2. От редакции
    Компьютерные исследования и моделирование, 2019, т. 11, № 4, с. 559-561
    Просмотров за год: 4.
  3. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 939-942
  4. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 999-1002
  5. Андрущенко В.А., Максимов Ф.А., Сызранова Н.Г.
    Моделирование полета и разрушения болида Бенешов
    Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 605-618

    Астероидно-кометная опасность в течение последних десятилетий признана научными и правительственными кругами всех стран мира одной из самых существенных угроз развития и даже существования нашей цивилизации. Одним из аспектов деятельности по предотвращению этой опасности является изучение вторжения достаточно крупных метеорных тел в атмосферу и их движения в ней, сопровождаемых большим числом физическо-химических явлений. Особый интерес вызывает падение метеорных тел, для которых прослежены их траекторные и прочие характеристики, и найдены сами выпавшие метеориты или их фрагменты. В настоящей работе изучено падение именно такого тела. На основе комплексной физико-математической модели, определяющей движение и разрушение космических тел естественного происхождения в атмосфере Земли, рассмотрены движение и фрагментация очень яркого болида Бенешов (Benešov, EN070591), который был зарегистрирован в Чехии Европейской наблюдательной системой в 1991 г. Для этого болида были получены уникальные наблюдательные данные, включая спектры излучения. В настоящей работе проведено моделирование аэробаллистики метеороида Бенешов и его фрагментов с учетом их сложного характера разрушения под воздействием тепловых и силовых факторов. Скорость метеорного тела, унос массы под действием тепловых потоков определяются из решения системы уравнений классической физической теории метеоров. При этом учитывается переменность параметра уноса массы по траектории. Процесс фрагментации метеороида рассматривается в рамках модели последовательного дробления на основе статистической теории прочности, с учетом влияния масштабного фактора на предел прочности объекта. Проведены расчеты совместного обтекания системы тел (осколков метеорита) при проявлении эффекта интерференции. Для расчета обтекания конгломерата осколков метеороида разработан метод моделирования на системе сеток, который позволяет рассматривать фрагменты различных форм, размеров и масс, а также допускает достаточно произвольное их относительное положение в потоке. Из-за неточностей в расчете траектории ученые 23 года не могли найти осколки этого болида. Благодаря современным методикам и более точным расчетам ученые выявили место падения, которое оказалось существенно удаленным от ожидаемого. После этого были обнаружены четыре небольших обломка метеорита. Проведенные расчеты движения и разрушения болида Бенешов показывают, что на процессы его взаимодействия с атмосферой влияет множество факторов: массовые и прочностные характеристики болида, параметры движения, механизмы разрушения, процессы взаимодействия фрагментов, включая эффекты интерференции, и др.

    Просмотров за год: 24. Цитирований: 1 (РИНЦ).
  6. Шаклеин А.А., Карпов А.И., Болкисев А.А.
    Анализ численного метода решения задачи о распространении пламени по вертикальной поверхности горючего материала
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 755-774

    Снижение пожарной опасности при использовании полимерных материалов является одной из актуальных научно-технических задач. В связи со сложностью проведения экспериментальных исследований в данной области важным направлением современной фундаментальной науки является развитие теоретических основ описания реагирующих течений. Для решения вопросов, связанных с распространением пламени по поверхности горючего материала, необходимо совершенствовать методы математического моделирования, что обусловлено большим количеством протекающих физико-химических процессов, требующих моделирования каждого из них в отдельности, и сложным характером взаимодействия между этими процессами как в газовой среде, так и в твердом теле.

    Распространение пламени вверх по вертикальной поверхности твердого горючего материала сопровождается нестационарными вихревыми структурами течения газа вблизи области горения, образование которых происходит в результате тепловой нестабильности и за счет действия сил естественной конвекции, ускоряющей горячие продукты сгорания. За счет вихревых структур от горячего газофазного пламени в твердый материал в каждый момент времени поступает разное количество тепловой энергии. Поэтому адекватный расчет теплового потока и, соответственно, вихревого течения имеет важное значение для оценки скорости распространения пламени.

    Данная работа появящена оценкам параметров численного метода решения задачи распространения пламени по поверхности горючего материала, учитывающего сопряженный характер взаимодействия газовой среды и твердого тела и вихревое течение, вызванное естественной конвекцией. В работе рассмотрены особенности использования различных аппроксимационных схем, используемых при интегрировании исходных дифференциальных уравнений по пространству и во времени, релаксации полей при итерировании внутри шага по времени, различных шагов интегрирования по времени.

    Сформулированная в работе математическая модель позволяет описывать процесс распространения пламени по поверхности горючего материала. Газодинамика моделируется системой уравнений Навье – Стокса, вихревое течение описывается комбинированной моделью турбулентности RANS–LES (DDES), турбулентное горение — комбинированной моделью горения Eddy Break-Up с учетом кинетических эффектов, теплопередача излучением — методом сферических гармоник первого порядка аппроксимации (P1). Решение уравнений производится в программном пакете OpenFOAM.

    Просмотров за год: 33.
  7. Способин А.В.
    Бессеточный алгоритм расчета взаимодействия крупных частиц с ударным слоем в сверхзвуковых гетерогенных потоках
    Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1007-1027

    Работа посвящена численному моделированию двухфазных течений, а именно расчету сверхзвукового обтекания затупленного тела потоком вязкого газа с примесью относительно крупных частиц, масса которых позволяет после отражения от поверхности выйти за пределы ударного слоя, двигаясь по инерции навстречу набегающему потоку. Натурные и вычислительные эксперименты показывают, что движение высокоинерционных частиц существенным образом изменяет структуру течения газа в ударном слое, а формирующиеся при этом направленные на тело импактные струи вызывают увеличение давления газа вблизи участков поверхности и кратный рост конвективного теплового потока.

    Построена математическая модель обтекания затупленного тела сверхзвуковым потоком вязкого газа с твердыми частицами. Решение системы нестационарных уравнений Навье–Стокса в консервативных переменных осуществляется бессеточным методом, в основе которого лежит аппроксимация частных пространственных производных газодинамических величин и содержащих их функций методом наименьших квадратов на множестве распределенных в области расчета узлов. Расчет невязких потоков выполняется методом HLLC в сочетании с MUSCL-реконструкцией третьего порядка, вязких потоков — схемой второго порядка. МНК-аппроксимация частных производных параметров газа по направлению также применяется для реализации краевых условий Неймана на выходной границе области расчета, а также поверхностях обтекаемых тел, которые считаются изотермическими твердыми стенками.

    Каждое движущееся тело окружено облаком расчетных узлов, принадлежащих его домену и перемещающихся вместе с ним в пространстве. Реализовано два подхода к моделированию перемещения объектов с учетом обратного влияния на течение газа: метод скользящих облаков фиксированной формы и эволюции единого облака узлов, представляющего собой объединение узлов разных доменов. Проведенные численные эксперименты подтвердили применимость предложенных методов к решению целевых задач моделирования движения крупных частиц в сверхзвуковом потоке.

    Выполнена программная реализация представленных алгоритмов на основе технологии параллельных гетерогенных вычислений OpenCL. Представлены результаты моделирования движения крупной частицы вдоль оси симметрии сферы навстречу набегающему потоку с числом Маха $\mathrm{M}=6$.

  8. Ступицкий Е.Л., Андрущенко В.А.
    Физические исследования, численное и аналитическое моделирование взрывных явлений. Обзор
    Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 505-546

    В данном обзоре рассмотрен широкий круг явлений и задач, связанных с взрывом. Подробные численные исследования позволили обнаружить интересный физический эффект — образование дискретных вихревых структур сразу за фронтом ударной волны, распространяющейся в плотных слоях неоднородной атмосферы. Показана необходимость дальнейшего исследования такого рода явлений и определения степени их связи с возможным развитием газодинамической неустойчивости. Дан краткий анализ многочисленных работ по тепловому взрыву метеороидов при их высокоскоростном движении в атмосфере Земли. Большое внимание уделено разработке численного алгоритма для расчета одновременного взрыва нескольких фрагментов метеороидов и проанализированы особенности развития такого газодинамического течения. Показано, что разработанные раннее алгоритмы для расчета взрывов могут успешно использоваться для исследования взрывных вулканических извержений. В работе представлены и обсуждаются результаты таких исследований как для континентальных, так и для подводных вулканов с определенными ограничениями на условия вулканической активности.

    В работе выполнен математический анализ и представлены результаты аналитических исследований ряда важных физических явлений, характерных для взрывов высокой удельной энергии в ионосфере. Показано, что принципиальное значение для разработки достаточно полных и адекватных теоретических и численных моделей таких сложных явлений, как мощные плазменные возмущения в ионосфере, имеет предварительное лабораторное физическое моделирование основных процессов, определяющих эти явления. Показано, что наиболее близким объектом для такого моделирования является лазерная плазма. Приведены результаты соответствующих теоретических и экспериментальных исследований и показана их научная и практическая значимость. Дан краткий обзор работ последних лет по использованию лазерного излучения для лабораторного физического моделирования процессов воздействия ядерного взрыва на астроидные материалы.

    В результате выполненного в обзоре анализа удалось выделить и предварительно сформулировать некоторые интересные и весомые в научном и прикладном отношении вопросы, которые необходимо исследовать на основе уже полученных представлений: это мелкодисперсные химически активные системы, образующиеся при выбросе вулканов; маломасштабные вихревые структуры; генерация спонтанных магнитных полей из-за развития неустойчивости и их роль в трансформации энергии плазмы при ее разлете в ионосфере. Важное значение имеет также вопрос об исследовании возможного лабораторного физического моделирования теплового взрыва тел при воздействии высокоскоростного плазменного потока, который до настоящего времени имеет лишь теоретические толкования.

  9. Иванков А.А., Финченко В.С.
    Численное исследование теплового разрушения метеорита «Челябинск» при входе в атмосферу Земли
    Компьютерные исследования и моделирование, 2013, т. 5, № 6, с. 941-956

    Представлена математическая модель для численного исследования теплового разрушения метеорита «Челябинск» при входе в атмосферу Земли. Исследование проводилось в рамках комплексного подхода, включающего расчет траектории движения с учетом сопутствующих движению метеорита физических процессов. Вместе с траекторией определялось поле течения и лучисто-конвективный теплообмен, определялся прогрев и разрушение метеорита под действием рассчитанных тепловых нагрузок. Комплексный подход позволяет точнее определять траекторию движения космических объектов, предсказывать зоны их падения и разрушения.

    Цитирований: 4 (РИНЦ).
  10. Математическое и компьютерное моделирование тепловых процессов в технических системах, проводимое в настоящее время, основано на допущении, согласно которому все параметры, определяющие тепловые процессы, полностью и однозначно известны и определены, то есть являются детерминированными. Между тем практика показывает, что параметры, определяющие тепловые процессы, носят неопределенный интервально стохастический характер, что, в свою очередь, обусловливает интервально стохастический характер тепловых процессов в технической системе. Это означает, что реальные значения температуры каждого элемента в технической системе будут случайным образом распределены внутри интервалов своего изменения. Поэтому детерминированный подход к моделированию тепловых процессов, при котором получаются конкретные значения температур элементов, не позволяет адекватно рассчитывать температурные распределения в технических системах. Интервально стохастический характер параметров, определяющих тепловые процессы, обусловливается тремя группами факторов: (a) статистическим технологическим разбросом параметров элементов при изготовлении и сборке системы; (b) случайным характером факторов, обусловленных функционированием технической системы (флуктуациями токов, напряжений, мощностями потребления, температурами и скоростями потоков охлаждающей жидкости и среды внутри системы; (c) случайностью параметров окружающей среды (температурой, давлением, скоростью). Интервально стохастическая неопределенность определяющих факторов в технических системах является неустранимой, поэтому пренебрежение ею приводит к ошибкам при проектировании технических систем. В статье развивается метод, позволяющий моделировать нестационарные нелинейные интервально стохастические тепловые процессы в технических и, в частности, электронных системах при интервальной неопределенности определяющих параметров. Метод основан на получении и последующем решении уравнений для нестационарных статистических мер (математических ожиданий, дисперсий, ковариаций) распределений температуры в технической системе при заданных интервалах изменения и статистических мерах определяющих параметров. Рассмотрено применение разработанного метода к моделированию интервально стохастического теплового процесса в конкретной электронной системе.

    Просмотров за год: 15. Цитирований: 6 (РИНЦ).
Страницы: следующая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.