Текущий выпуск Номер 5, 2020 Том 12
Результаты поиска по 'интервальный':
Найдено статей: 8
  1. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 939-942
  2. В работе развивается иерархический метод математического и компьютерного моделирования интервально-стохастических тепловых процессов в сложных электронных системах различного назначения. Разработанная концепция иерархического структурирования отражает как конструктивную иерархию сложной электронной системы, так и иерархию математических моделей процессов теплообмена. Тепловые процессы, учитывающие разнообразные физические явления в сложных электронных системах, описываются системами стохастических, нестационарных и нелинейных дифференциальных уравнений в частных производных, и в силу этого их компьютерное моделирование наталкивается на значительные вычислительные трудности даже с применением суперкомпьютеров. Иерархический метод позволяет избежать указанных трудностей. Иерархическая структура конструкции электронной системы в общем случае характеризуется пятью уровнями: 1 уровень — активные элементы ЭС (микросхемы, электро-, радиоэлементы); 2 уровень — электронный модуль; 3 уровень — панель, объединяющая множество электронных модулей; 4 уровень — блок панелей; 5 уровень — стойка, установленная в стационарном или подвижном помещении. Иерархия моделей и моделирования стохастических тепловых процессов строится в порядке, обратном иерархической структуре конструкции электронной системы, при этом моделирование интервально-стохастических тепловых процессов осуществляется посредством получения уравнений для статистических мер. Разработанный в статье иерархический метод позволяет учитывать принципиальные особенности тепловых процессов, такие как стохастический характер тепловых, электрических и конструктивных факторов при производстве, сборке и монтаже электронных систем, стохастический разброс условий функционирования и окружающей среды, нелинейные зависимости от температуры факторов теплообмена, нестационарный характер тепловых процессов. Полученные в статье уравнения для статистических мер стохастических тепловых процессов представляют собой систему 14-ти нестационарных нелинейных дифференциальных уравнений первого порядка в обыкновенных производных, решение которых легко реализуется на современных компьютерах существующими численными методами. Рассмотрены результаты применения метода при компьютерном моделировании стохастических тепловых процессов в электронной системе. Иерархический метод применяется на практике при тепловом проектировании реальных электронных систем и создании современных конкурентоспособных устройств.

    Просмотров за год: 3.
  3. Математическое и компьютерное моделирование тепловых процессов в технических системах, проводимое в настоящее время, основано на допущении, согласно которому все параметры, определяющие тепловые процессы, полностью и однозначно известны и определены, то есть являются детерминированными. Между тем практика показывает, что параметры, определяющие тепловые процессы, носят неопределенный интервально стохастический характер, что, в свою очередь, обусловливает интервально стохастический характер тепловых процессов в технической системе. Это означает, что реальные значения температуры каждого элемента в технической системе будут случайным образом распределены внутри интервалов своего изменения. Поэтому детерминированный подход к моделированию тепловых процессов, при котором получаются конкретные значения температур элементов, не позволяет адекватно рассчитывать температурные распределения в технических системах. Интервально стохастический характер параметров, определяющих тепловые процессы, обусловливается тремя группами факторов: (a) статистическим технологическим разбросом параметров элементов при изготовлении и сборке системы; (b) случайным характером факторов, обусловленных функционированием технической системы (флуктуациями токов, напряжений, мощностями потребления, температурами и скоростями потоков охлаждающей жидкости и среды внутри системы; (c) случайностью параметров окружающей среды (температурой, давлением, скоростью). Интервально стохастическая неопределенность определяющих факторов в технических системах является неустранимой, поэтому пренебрежение ею приводит к ошибкам при проектировании технических систем. В статье развивается метод, позволяющий моделировать нестационарные нелинейные интервально стохастические тепловые процессы в технических и, в частности, электронных системах при интервальной неопределенности определяющих параметров. Метод основан на получении и последующем решении уравнений для нестационарных статистических мер (математических ожиданий, дисперсий, ковариаций) распределений температуры в технической системе при заданных интервалах изменения и статистических мерах определяющих параметров. Рассмотрено применение разработанного метода к моделированию интервально стохастического теплового процесса в конкретной электронной системе.

    Просмотров за год: 15. Цитирований: 6 (РИНЦ).
  4. В работе разработан кластерный метод математического моделирования интервально-стохастических тепловых процессов в сложных технических, в частности электронных, системах (ЭС). В кластерном методе конструкция сложной ЭС представляется в виде тепловой модели, являющейся системой кластеров, каждый из которых содержит ядро, объединяющее в себе тепловыделяющие элементы, попадающие в данный кластер, оболочку кластера и поток среды, протекающий через кластер. Состояние теплового процесса в каждом кластере и в каждый момент времени характеризуется тремя интервально-стохастическими переменными состояния, а именно температурами ядра, оболочки и потока среды. При этом элементы каждого кластера, а именно ядро, оболочка и поток среды, находятся в тепловом взаимодействии между собой и элементами соседних кластеров. В отличие от существующих методов кластерный метод позволяет моделировать тепловые процессы в сложных ЭС с учетом неравномерного распределения температуры в потоке среды нагнетаемой в ЭС, сопряженного характера теплообмена между пото- ком среды в ЭС, ядрами и оболочками кластеров и интервально-стохастического характера тепловых процессов в ЭС, вызванного статистическим технологическим разбросом изготовления и монтажа электронных элементов в ЭС, и случайными флуктуациями тепловых параметров окружающей среды. Математическая модель, описывающая состояния тепловых процессов в кластерной тепловой модели, представляет собой систему интервально-стохастических матрично-блочных уравнений с матричными и векторными блоками, соответствующими кластерам тепловой модели. Решением интервально-стохастических уравнений являются статистические меры переменных состояния тепловых процессов в кластерах — математические ожидания, ковариации между переменными состояния и дисперсии. Методика применения кластерного метода показана на примере реальной ЭС.

  5. Кольцов Ю.В., Бобошко Е.В.
    Сравнительный анализ методов оптимизации для решения задачи интервальной оценки потерь электроэнергии
    Компьютерные исследования и моделирование, 2013, т. 5, № 2, с. 231-239

    Данная работа посвящена сравнительному анализу оптимизационных методов и алгоритмов для проведения интервальной оценки технических потерь электроэнергии в распределительных сетях напряжением 6–20 кВ. Задача интервальной оценки потерь сформулирована в виде задачи многомерной условной минимизации/максимизации с неявной целевой функцией. Рассмотрен ряд методов численной оптимизации первого и нулевого порядков, с целью определения наиболее подходящего для решения рассмотренной проблемы. Таким является алгоритм BOBYQA, в котором целевая функция заменяется ее квадратичной аппроксимацией в пределах доверительной области.

    Просмотров за год: 2. Цитирований: 1 (РИНЦ).
  6. Дмитриев А.В., Марков Н.В.
    Двуслойные интервальные взвешенные графы в оценке рыночных рисков
    Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 159-166

    Данная работа посвящена применению двуслойных интервальных взвешенных графов в прогнозировании нестационарных временных рядов и оценке по полученным прогнозам рыночных рисков. Первый слой графа с интервальными вершинами, формируемый во время первичного обучения системы, отображает все возможные флуктуации системы в отрезке времени, в котором обучали систему. Интервальные вершины второго слоя графа (надстройка над графом первого слоя), отображающие степень ошибки моделируемых значений временного ряда, соединены ребрами с вершинами графа первого слоя. Предложенная модель апробирована на получении 90-дневного прогноза цен на стальные биллеты. Средняя ошибка прогноза составила 2,6 %, что меньше средней ошибки авторегрессионных прогнозов.

    Просмотров за год: 2. Цитирований: 1 (РИНЦ).
  7. Шумов В.В.
    Анализ социально-информационного влияния на примере войн США в Корее, Вьетнаме и Ираке
    Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 167-184

    В первом разделе работы предложено определение функции представления (восприятия) о показателях, являющихся компонентами субъективной картины мира индивидов. Используя основной психофизический закон в форме С. Стивенса и опираясь на гипотезы социализации, рациональности, индивидуального выбора, комплексности информационных воздействий, динамики представлений и восприятий, доступности, получены формальные зависимости, позволяющие вычислять функции представления (восприятия) для показателей вероятностного (известна функция распределения или субъективная вероятность) и интервального типов. Во втором и третьем разделах выполнена оценка параметров функции представления по данным опросов населения США, связанных с войной в Корее, во Вьетнаме и в Ираке.

    Просмотров за год: 2. Цитирований: 3 (РИНЦ).
  8. Говорков Д.А., Новиков В.П., Соловьёв И.Г., Цибульский В.Р.
    Интервальный анализ динамики растительного покрова
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1191-1205

    В развитие ранее полученного результата по моделированию динамики растительного покрова, вследствие изменчивости температурного фона, представлена новая схема интервального анализа динамики флористических образов формаций в случае, когда параметр скорости реагирования модели динамики каждого учетного вида растения задан интервалом разброса своих возможных значений. Желаемая в фундаментальных исследованиях детализация описания функциональных параметров макромоделей биоразнообразия, учитывающая сущностные причины наблюдаемых эволюционных процессов, может оказаться проблемной задачей. Использование более надежных интервальных оценок вариабельности функциональных параметров «обходит» проблему неопределенности в вопросах первичного оценивания эволюции фиторесурсного потенциала осваиваемых подконтрольных территорий. Полученные решения сохраняют не только качественную картину динамики видового разнообразия, но и дают строгую, в рамках исходных предположений, количественную оценку меры присутствия каждого вида растения. Практическая значимость схем двустороннего оценивания на основе конструирования уравнений для верхних и нижних границ траекторий разброса решений зависит от условий и меры пропорционального соответствия интервалов разбросов исходных параметров с интервалами разбросов решений. Для динамических систем желаемая пропорциональность далеко не всегда обеспечивается. Приведенные примеры демонстрирует приемлемую точность интервального оценивания эволюционных процессов. Важно заметить, что конструкции оценочных уравнений порождают исчезающие интервалы разбросов решений для квазипостоянных температурных возмущений системы. Иными словами, траектории стационарных температурных состояний растительного покрова предложенной схемой интервального оценивания не огрубляется. Строгость результата интервального оценивания видового состава растительного покрова формаций может стать определяющим фактором при выборе метода в задачах анализа динамики видового разнообразия и растительного потенциала территориальных систем ресурсно-экологического мониторинга. Возможности предложенного подхода иллюстрируются геоинформационными образами вычислительного анализа динамики растительного покрова полуострова Ямал и графиками ретроспективного анализа флористической изменчивости формаций ландшафтно-литологической группы «Верховые» по данным вариации летнего температурного фона метеостанции г. Салехарда от 2010 до 1935 года. Разработанные показатели флористической изменчивости и приведенные графики характеризуют динамику видового разнообразия, как в среднем, так и индивидуально, в виде интервалов возможных состояний по каждому учетному виду растения.

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал входит в Перечень российских рецензируемых научных журналов, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученых степеней доктора и кандидата наук ВАК, группы специальностей: 01.01.00, 01.02.00.
 

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал индексируется в Scopus