Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Моделирование пространственного сценария перехода к хаосу через разрушение тора в задаче с концентрационно-зависимой диффузией
Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 9-31Универсальные сценарии перехода к хаосу в динамических системах к настоящему моменту хорошо изучены. К типичным сценариям относятся каскад бифуркаций удвоения периода (сценарий Фейген-баума), разрушение тора малой размерности (сценарий Рюэля–Такенса) и переход через перемежаемость (сценарий Помо–Манневилля). В более сложных пространственно-распределенных динамических системах нарастающая с изменением параметра сложность поведения по времени тесно переплетается с формированием пространственных структур. Однако вопрос о том, могут ли в каком-то сценарии пространственная и временная оси полностью поменяться ролями, до сих пор остается открытым. В данной работе впервые предлагается математическая модель конвекции–реакции–диффузии, в рамках которой реализуется пространственный аналог перехода к хаосу через разрушение квазипериодического режима в рамках сценария Рюэля–Такенса. Исследуемая физическая система представляет собой два водных раствора кислоты (A) и основания (B), в начальный момент времени разделенных по пространству и помещенных в вертикальную ячейку Хеле–Шоу, находящуюся в статическом поле тяжести. При приведении растворов в контакт начинается фронтальная реакция нейтрализации второго порядка: A + B $\to$ C, которая сопровождается выделением соли (С). Процесс характеризуется сильной зависимостью коэффициентов диффузии реагентов от их концентрации, что приводит к возникновению двух локальных зон пониженной плотности, в которых независимо друг от друга возникают хемоконвективные движения жидкости. Слои, в которых развивается конвекция, все время остаются разделенными прослойкой неподвижной жидкости, но они могут влиять друг на друга посредством диффузии реагентов через прослойку. Формирующаяся хемо-конвективная структура представляет собой модулированную стоячую волну, постепенно разрушающуюся со временем, повторяя последовательность бифуркаций сценария разрушения двумерного тора. Показано, что в ходе эволюции системы пространственная ось, направленная вдоль фронта реакции, выполняет роль времени, а само время играет роль управляющего параметра.
-
Диффузионная неустойчивость в трехкомпонентной модели типа «реакция–диффузия»
Компьютерные исследования и моделирование, 2011, т. 3, № 2, с. 135-146Просмотров за год: 1. Цитирований: 7 (РИНЦ).В данной работе проведено исследование возникновения диффузионной неустойчивости в системе из трех уравнений типа «реакция–диффузия». В общем виде получены условия как тьюринговской, так и волновой неустойчивостей. Выявлены качественные свойства, которыми должна обладать система для того, чтобы в ней могла произойти та или другая бифуркация. В численных экспериментах показано, что при выполнении соответствующих условий в нелинейной модели возникают структуры, которые предсказываются линейным анализом.
-
Исследование механизмов формирования сегментированных волн в активных средах
Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 533-542Цитирований: 3 (РИНЦ).В данной работе предложены три возможных механизма формирования сегментированных волн и спиралей. Структуры такого рода были обнаружены в реакции Белоусова–Жаботинского, диспергированной в обращенной микроэмульсии аэрозоля OT. Первый механизм обусловлен взаимодействием двух подсистем, одна из которых возбудима, а другая неустойчива по Тьюрингу. Показано, как под воздействием поперечной неустойчивости из однородной гладкой спиральной волны формируется сегментированная спираль. В зависимости от свойств подсистем мы демонстрируем несколько различных по виду и форме сегментированных спиральных волн. В качестве второго механизма мы предлагаем «дробление» бегущей волны в окрестности бифуркационной точки коразмерности два, в которой пересекаются границы тьюринговской и волновой неустойчивостей. Наконец, мы показываем, что сегментированные волны могут возникать в некоторых простых двухкомпонентных моделях типа «реакция–диффузия», имеющих более одного стационарного состояния, в частности, в модели ФитцХью–Нагумо.
-
Просмотров за год: 64. Цитирований: 21 (РИНЦ).
Обзор содержит введение в модели клеточных автоматов. Описаны три автомата на плоскости: клеточный автомат Винера-Розенблюта, игра «Жизнь» и автомат Кохомото-Ооно для моделирования систем «реакция–диффузия». Построены обобщения клеточного автомата игры «Жизнь» на случай пространства произвольной размерности и автомата Кохомото-Ооно для случая трех пространственных измерений.
-
Влияние конвекции на двумерную динамику в нелокальной реакционно-диффузионной модели
Компьютерные исследования и моделирование, 2011, т. 3, № 1, с. 55-61Просмотров за год: 3. Цитирований: 1 (РИНЦ).Численными методами исследовано формирование пространственных структур, описываемых скалярным уравнением Фишера–Колмогорова–Петровского–Пискунова с нелокальными конкурентными потерями и конвекцией, линейно зависящей от пространственных переменных. Показано, что при соответствующем выборе значений параметров уравнения, начальная функция, локализованная в окрестности точки, трансформируется в функцию, локализованную в окрестности кольца с симметрично расположенными на нем локальными максимумами. Радиус кольца и число максимумов зависят от конвекции.
-
Рождение и развитие беспорядка внутри упорядоченного состояния в пространственно распределенной модели химической реакции
Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 595-607Просмотров за год: 7.В работе изложены основные моменты приближения среднего поля в применении к многокомпонентным стохастическим реакционно-диффузионным системам.
Представлена изучаемая модель химической реакции — брюсселятор. Записаны кинетические уравнения реакции, учитывающие диффузию промежуточных компонент и флуктуации концентраций исходных веществ. Флуктуации моделируются как случайные гауссовы однородные и изотропные в пространстве поля, с нулевым средним и пространственной корреляционной функцией, имеющей нетривиальную структуру. В работе рассматриваются значения параметров модели, соответствующие пространственно неоднородному упорядоченному состоянию в детерминированном случае.
В работе получено одноточечное двумерное нелинейное самосогласованное уравнение Фоккера–Планка в интерпретации Стратоновича в приближении среднего поля для пространственно распределенного стохастического брюсселятора, которое описывает динамику плотности распределения вероятностей значений концентраций компонент рассматриваемой системы. Найдены значения интенсивности внешнего шума, соответствующие двум типам решений уравнения Фоккера–Планка: решению с времен- ной бимодальностью и решению с многократным чередованием одно- и бимодального видов плотности вероятностей. Проведено численное исследование динамики плотности распределения вероятностей и изучено поведение во времени дисперсий, математических ожиданий и наиболее вероятных значений концентраций компонент при различных значениях интенсивности шума и бифуркационного параметра в указанных областях параметров задачи.
Показано, что, начиная с некоторого значения интенсивности внешнего шума, внутри упорядоченной фазы зарождается беспорядок, существующий конечное время, причем чем больше шум, тем больше его время жизни. Чем дальше от точки бифуркации, тем меньше шум, который его порождает, и тем уже область значений интенсивности шума, при которых система эволюционирует к упорядоченному, но уже новому статистически стационарному состоянию. При некотором втором значении интенсивности шума возникает перемежаемость упорядоченной и разупорядоченной фаз. Увеличение интенсивности шума приводит к тому, что частота перемежаемости увеличивается.
Таким образом, показано, что сценарием шумоиндуцированного перехода «порядок–беспорядок» в изучаемой системе является перемежаемость упорядоченной и разупорядоченной фаз.
-
Вычислительный алгоритм для изучения внутренних ламинарных потоков многокомпонентного газа с разномасштабными химическими процессами
Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1169-1187Разработан вычислительный алгоритм для изучения химических процессов во внутренних течениях многокомпонентного газа при воздействии лазерного излучения. Математическая модель представляет собой уравнения газовой динамики с химическими реакциями при малых числах Маха с учетом диссипативных членов, которые описывают динамику вязкой теплопроводной среды с диффузией, химическими реакциями и подводом энергии посредством лазерного излучения. Для данной математической модели характерно наличие нескольких сильно различающихся между собой временных и пространственных масштабов. Вычислительный алгоритм построен на основе схемы расщепления по физическим процессам. Каждый шаг интегрирования по времени разбивается на следующие блоки: решение уравнений химической кинетики, решение уравнения для интенсивности излучения, решение уравнений конвекции – диффузии, расчет динамической составляющей давления и расчет коррекции вектора скорости. Решение жесткой системы уравнений химической кинетики проводится с помощью специализированной явной схемы второго порядка точности или подключаемым модулем RADAU5. Для нахождения конвективных членов в уравнениях применяются численные потоки Русанова и WENO-схема повышенного порядка аппроксимации. На основе полученного алгоритма разработан код с использованием технологии параллельных вычислений MPI. Созданный код использован для расчетов пиролиза этана с радикальными реакциями. Детально изучается формирование сверхравновесных концентраций радикалов по объему реактора. Проведено численное моделирование течения реакционного газа в плоской трубе с подводом лазерного излучения, востребованное для интерпретации экспериментальных результатов. Показано, что лазерное излучение увеличивает в разы конверсию этана и выходы целевых продуктов на коротких длинах ближе к входу в реакционную зону. Сокращение эффективной длины реакционной зоны позволяет предложить новые решения при проектировании реакторов конверсии этана в ценные углеводороды. Разработанные алгоритм и программа найдут свое применение в создании новых технологий лазерной термохимии.
-
Уравнения диффузии–реакции–адвекции для системы «хищник–жертва» в гетерогенной среде
Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1161-1176Анализируются варианты учета неоднородности среды при компьютерном моделировании динамики хищника и жертвы на основе системы уравнений реакции–диффузии–адвекции. Локальное взаимодействие видов (члены реакции) описывается логистическим законом роста для жертвы и соотношениями Беддингтона – ДеАнгелиса, частными случаями которых являются функциональный отклик Холлинга второго рода и модель Ардити – Гинзбурга. Рассматривается одномерная по пространству задача для неоднородного ресурса (емкости среды) и трех видов таксиса (жертвы на ресурс и от хищника, хищника к жертве). Используется аналитический подход для исследования устойчивости стационарных решений в случае локального взаимодействия (бездиффузионный подход) и вычисления на основе метода прямых для учета диффузионных и адвективных процессов. Сравнение критических значений параметра смертности хищников показало, что при постоянных коэффициентах в соотношениях Беддингтона – ДеАнгелиса получаются переменные по пространственной координате критические величины, а для модели Ардити – Гинзбурга данный эффект не наблюдается. Предложена модификация членов реакции, позволяющая учесть неоднородность ресурса. Представлены численные результаты по динамике видов для больших и малых миграционных коэффициентов, демонстрирующие снижение влияния вида локальных членов на формирующиеся пространственно-временные распределения популяций. Проанализированы бифуркационные переходы при изменении параметров диффузии–адвекции и членов реакции.
-
Исследование точечной математической модели полимеризации фибрина
Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 247-258Функциональное моделирование процессов свертывания крови, в частности возникновения фибрин–полимерных сгустков, имеет большое значение для прикладных вопросов медицинской биофизики. Несмотря на некоторые неточности в математических моделях, качественные результаты представляют огромный интерес для экспериментаторов как средство анализа возможных вариантов развития их работ. При достижении хорошего количественного совпадения с экспериментальными результатами такие модели могут быть использованы для технологических применений. Целью данной работы является моделирование процесса многоступенчатой полимеризации фибрина и сопряженного с ними золь-гель-перехода — возникновения фибрин-полимерной сетки в точечной системе. Для программной реализации и численных экспериментов используется неявный метод Розенброка второго порядка с комплексными коэффициентами (CROS). В работе представлены результаты моделирования и проведен анализ чувствительности численных решений к коэффициентам математической модели методами вариации. Показано, что в физиологическом диапазоне параметров констант модели существует лаг-период 20 секунд между началом реакции и возникновением зародышей фибрин-полимерной сетки, что хорошо соответствует экспериментальным наблюдениям подобных систем. Показана возможность появления нескольких $(n = 1–3)$ последовательных золь-гель-переходов. Такое необычное поведение системы является прямым следствием наличия нескольких фаз в процессе полимеризации фибрина. На последнем этапе раствор олигомеров фибрина длины 10 может достичь полуразбавленного состояния. Это, в свою очередь, приведет к исключительно быстрой кинетике формирования фибрин-полимерной сетки, управляемой вращательной диффузией олигомеров. Если же состояние полуразбавленного раствора не достигается, то образование фибрин-полимерной сетки контролируется трансляционной диффузией, которая является существенно более медленным процессом. Такой дуализм в процессе золь-гель-перехода привел к необходимости введения функции переключения в уравнения для кинетики образования фибрин-полимера. Ситуация с последовательными золь-гель-переходами соответствует экспериментальным системам, где вследствие физических процессов, таких как пресипитация, фибрин-полимерная сетка может быть быстро удалена из объема.
Ключевые слова: фибрин, фибрин-полимер, свертывание крови, математическая модель, метод Розенброка (CROS), анализ чувствительности.Просмотров за год: 8. -
Стохастическое моделирование химических реакций в субдиффузионной среде
Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 87-104В последние десятилетия активно развивается теория аномальной диффузии, объединяющая различные транспортные процессы, в которых характерное среднеквадратичное рассеяние растет со временем по степенному закону, а не линейно, как для нормальной диффузии. Так, к примеру, диффузия жидкостей в пористых телах, перенос зарядов в аморфных полупроводниках и молекулярный транспорт в вязких средах демонстрируют аномальное «замедление» по сравнению со стандартной моделью.
Удобным инструментом исследования таких процессов является прямое стохастическое моделирование. В работе описана одна из возможных схем такого рода, в основе которой лежит процесс восстановления с временами ожидания, имеющими степенную асимптотику. Аналитические построения показывают тесную связь между рассмотренным классом случайных процессов и уравнениями с производными нецелого порядка. Этот подход легко можно распространить ( соответствующий алгоритм представлен в тексте) на системы, в которых, помимо транспорта, возможны химические реакции. Актуальность исследований в этой области продиктована тем, что точный вид интегро-дифференциальных уравнений, описывающих химическую кинетику в системах с аномальной диффузией, остается пока предметом дискуссии.
Поскольку рассматриваемый класс случайных процессов не обладает марковским свойством, здесь возникают принципиально новые проблемы по сравнению с моделированием химических реакций при нормальной диффузии. Главная из них заключается в способе, которым определяется, какие молекулы должны «погибнуть» в ходе реакции. Поскольку точная схема, отслеживающая каждую возможную комбинацию реактантов, неприемлема с вычислительной точки зрения из-за слишком большого числа таких комбинаций, было предложено несколько простых эвристических процедур. Серия вычислительных экспериментов показала, что результаты весьма чувствительны к выбору одной из этих эвристик.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"