Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Математические методы стабилизации структуры социальных систем при действии внешних возмущений
Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 845-857В статье рассматривается билинейная модель влияния внешних возмущений на стабильность струк- туры социальных систем. Исследуются подходы к стабилизации третьей стороной исходной системы, состоящей из двух групп, — путем сведения исходной системы к линейной системе с неопределенными параметрами и использования результатов теории линейных динамических игр с квадратичным критери- ем. На основе компьютерных экспериментов анализируется влияние коэффициентов условной модели социальной системы и параметров управления на качество стабилизации системы. Показано, что исполь- зование третьей стороной минимаксной стратегии в форме управления с обратной связью приводит к от- носительно близкому приближению численности второй группы (возбуждаемой внешними воздействия- ми) к приемлемому уровню даже при неблагоприятном периодическом динамическом воздействии.
Исследуется влияние на качество стабилизации системы одного из ключевых коэффициентов в кри- терии $(\varepsilon)$, используемого для компенсации воздействия внешних возмущений (последние присутствуют в линейной модели в форме неопределенности). С использованием операционного исчисления показыва- ется, что уменьшение коэффициента ε должно приводить к увеличению значений суммы квадратов уп- равления. Проведенные в статье компьютерные расчеты показывают также, что улучшение приближения структуры системы к равновесному уровню при уменьшении коэффициента $\varepsilon$ достигается за счет весьма резких изменений управления $V_t$ в начальный период, что может индуцировать переход части членов спокойной группы во вторую, возбужденную группу.
В статье исследуется также влияние на качество управления значений коэффициентов модели, ха- рактеризующих уровень социальной напряженности. Расчеты показывают, что повышение уровня соци- альной напряженности (при прочих равных условиях) приводит к необходимости значительного увели- чения третьей стороной усилий на стабилизацию, а также величины управления в начальный момент времени.
Результаты проведенного в статье статистического моделирования показывают, что рассчитанные управления с обратной связью успешно компенсируют случайные возмущения, действующие на соци- альную систему (как в форме независимых воздействий типа белый шум, так и в форме автокоррелиро- ванных воздействий).
Ключевые слова: модели, социальные группы, стабильность, линейные динамические системы, неопределенные параметры. -
Неявный алгоритм решения уравнений движения несжимаемой жидкости
Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 1009-1023Для решения уравнений Навье – Стокса в случае несжимаемых течений разработано большое количество методов, наиболее популярными из которых являются методы с коррекцией скорости по алгоритму SIMPLE, аналогом которого является метод расщепления по физическим переменным. Данные методы, разработанные еще в прошлом веке, использовались для решения достаточно простых задач — расчета как стационарных течений, так и нестационарных, в которых границы расчетной области были неподвижны. В настоящее время задачи вычислительной гидродинамики существенно усложнились. Интерес представляют задачи с движением тел в расчетной области, движением контактных границ, кавитацией и задачи с динамической локальной адаптацией расчетной сетки. При этом расчетная сетка меняется, что приводит к нарушению условия дивергентности скорости на ней. Поскольку дивергентные скорости используются не только для уравнений Навье – Стокса, но и для всех остальных уравнений математической модели движения жидкости — моделей турбулентности, массопереноса и сохранения энергии, нарушение этого условия ведет к численным ошибкам и, зачастую, к расхождению вычислительного алгоритма.
В статье представлен неявный метод расщепления по физическим переменным, который использует дивергентные скорости с данного шага по времени для решения несжимаемых уравнений Навье – Стокса. Метод разработан для расчета течений при наличии подвижных и контактных границ, моделируемых в постановке Эйлера. Метод позволяет проводить расчеты с шагом интегрирования, на порядки превышающем явный шаг по времени (число Куранта – Фридрихcа – Леви $CFL\gg1$). В данной статье представлен вариант метода для несжимаемых течений. Вариант метода, позволяющий рассчитывать движение жидкости и газа при любых числах Маха, будет опубликован в ближайшее время. Метод для полностью сжимаемых течений реализован в программном комплексе FlowVision.
В статье приводятся результаты численного решения классической задачи обтекания кругового цилиндра при малых числах Рейнольдса ($50<Re<140$), при которых ламинарное обтекание цилиндра становиться нестационарным и образуется дорожка Кармана. Показано хорошее совпадение расчетов с экспериментальными данными, опубликованными в классических работах Ван-Дайка и Танеды.
-
Моделирование транспортных потоков на основе квазигазодинамического подхода и теории клеточных автоматов с использованием суперкомпьютеров
Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 175-194Целью исследования являются моделирование динамики автотранспортных потоков на транспортных сетях мегаполисов и систематизация современного состояния дел в этой области. Во введении указывается, что на первый план выходит развитие интеллектуальных транспортных систем, которые становятся неотъемлемой частью современных транспортных технологий. Основным ядром таких систем являются адекватные математические модели, максимально приближенные к реальности. Отмечается, что в связи с большим объемом вычислений необходимо использование суперкомпьютеров, следовательно, создание специальных пар аллельных алгоритмов. В начале статьи приводится современная классификация моделей, обсуждаются отличительные особенности каждого класса со ссылками на соответствующие примеры. Далее основное внимание уделяется созданным авторами статьи разработкам в области как макроскопического, так и микроскопического моделирования и определению места этих разработок в приведенной выше классификации. Макроскопическая модель основана на приближении сплошной среды и использует идеологию квазигазодинамических систем уравнений. Указаны ее достоинства по сравнению с существующими моделями этого класса. Система уравнений модели представлена как в одномерном варианте, но с возможностью исследования многополосного движения, так и в двумерном варианте, с введением понятия боковой скорости, то есть скорости перестроения из полосы в полосу. Второй вариант позволяет проводить вычисления в расчетной области, соответствующей реальной геометрии дороги. Представлены тестовые расчеты движения по дороге с локальным расширением и по дороге с системой светофоров с различными светофорными режимами. Расчеты позволили в первом случае сделать интересные выводы о влиянии расширения на пропускную способность дороги в целом, а во втором случае — выбрать оптимальный режим для получения эффекта «зеленой волны». Микроскопическая модель основана на теории клеточных автоматов и однополосной модели Нагеля – Шрекенберга и обобщена авторами на случай многополосного движения. В модели реализованы различные поведенческие стратегии водителей. В качестве теста моделируется движение на реальном участке транспортной сети в центре г. Москвы. Причем для грамотного прохождения транспортных узлов сети в соответствии с правилами движения реализованы специальные алгоритмы, адаптированные для параллельных вычислений. Тестовые расчеты выполнены на суперкомпьютере К-100 ЦКП ИПМ им. М. В. Келдыша РАН.
-
Транспорт и адгезия тромбоцитов в условиях потока крови: роль эритроцитов
Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 185-200Просмотров за год: 3. Цитирований: 8 (РИНЦ).Система гемостаза служит организму для экстренного восстановления целостности стенок кровеносных сосудов при их повреждении. Главные компоненты этой системы – тромбоциты (самые маленькие клетки крови) – постоянно содержатся в крови и быстро адгезируют к месту повреждения. Миграция тромбоцитов поперёк потока крови и их попадание на место адгезии определяются характером течения крови и, в частности, физическим присутствием в крови других клеток – эритроцитов. В данном обзоре рассматриваются основные закономерности этого влияния и имеющиеся в литературе математические модели миграции тромбоцитов поперёк потока крови и их адгезии к стенке сосуда, основанные на дифференциальных уравнениях в частных производных вида «конвекция-диффузия». Обсуждаются недавние достижения в данной области. Понимание механизмов указанных процессов необходимо для построения адекватных математических моделей работы гемостатической системы в условиях потока крови в норме и патологии.
-
Прогностические модели эффективности и медицинского значения вакцинации противоротавирусной вакциной в Украине
Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 407-421Представлены результаты расчетно-теоретических исследований, связанных с оценкой эффективности и медицинского значения вакцинации противоротавирусной вакциной в Украине. Искомые показатели – генотип-специфическая эффективность вакцины, число предотвращенных острых случаев заболевания, госпитализаций, амбулаторных визитов и смертей – получены применением математического моделирования и реализацией полученной модели на компьютере в виде дерева принятия решений на основе марковской модели. Результаты моделирования показали значительный положительный эффект вакцинации по сравнению с невакцинацией при учете достаточного охвата вакциной населения Украины.
Ключевые слова: ротавирусная инфекция, противоротавирусная вакцина, вакцинация, дерево принятия решений, марковская модель.Просмотров за год: 2. -
Математическое моделирование одного нового способа разрушения ледяного покрова
Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 677-691С использование теории малых упругих деформаций и апробированного численного метода, строится математическая модель разрушения ледяного покрова ледокольным устройством новой конструкция.
Ключевые слова: математическая модель ледяного покрова, численный метод, ледокольное устройство, разрушения льда. -
Модификация модели роста грибов Чантера–Торнли и ее анализ средствами многоподходного имитационного моделирования
Компьютерные исследования и моделирование, 2015, т. 7, № 2, с. 375-385Классическая математическая модель выращивания грибов Чантера–Торнли модифицирована и реализована в среде имитационного моделирования AnyLogic с одновременным использованием элементов системной динамики, дискретно-событийного и агентного подхода. Проведено численное исследование построенной модели и решена оптимизационная задача нахождения возраста срезания плодовых тел, обеспечивающего максимальный интегральный урожай грибов по всем «волнам» плодообразования.
Ключевые слова: имитационное моделирование, системная динамика, агентные модели, мицелий, спорофоры, субстрат.Просмотров за год: 3. Цитирований: 3 (РИНЦ). -
Модели борьбы с силовыми актами в морском пространстве
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 907-920Моделирование борьбы с террористическими, пиратскими и разбойными актами на море является актуальной научной задачей в силу распространенности силовых актов и недостаточного количества работ по данной проблематике. Действия пиратов и террористов разнообразны. С использованием судна-базы они могут нападать на суда на удалении до 450–500 миль от побережья. Выбрав цель, они ее преследуют и с применением оружия идут на абордаж. Действия по освобождению судна, захваченного пиратами или террористами, включают: блокирование судна, прогноз мест возможного нахождения пи- ратов на судне, проникновение (с борта на борт, по воздуху или из-под воды) и зачистка помещений судна. Анализ специальной литературы по действиям пиратов и террористов показал, что силовой акт (и действия по его нейтрализации) состоит из двух этапов: во-первых, это блокирование судна, заключающееся в принуждении к его остановке, и, во-вторых, нейтрализация команды (группы террористов, пиратов), включая проникновение на судно (корабль) и его зачистку. Этапам цикла поставлены в соответствие показатели — вероятность блокирования и вероятность нейтрализации. Переменными модели силового акта являются количество судов (кораблей, катеров) у нападающих и обороняющихся, а также численность группы захвата нападающих и экипажа судна — жертвы атаки. Параметры модели (показатели корабельного и боевого превосходства) оценены методом максимального правдоподобия с использованием международной базы по инцидентам на море. Значения названных параметров равны 7.6–8.5. Столь высокие значения параметров превосходства отражают возможности сторон по действиям в силовых актах. Предложен и статистически обоснован аналитический метод расчета параметров превосходства. В модели учитываются следующие показатели: возможности сторон по обнаружению противника, скоростные и маневренные характеристики судов, высота судна и характеристики средств абордажа, характеристики оружия и средств защиты и др. С использованием модели Г. Беккера и теории дискретного выбора оценена вероятность отказа от силового акта. Значимость полученных моделей для борьбы с силовыми актами в морском пространстве заключается в возможности количественного обоснования мер по защите судна от пиратских и террористических атак и мер сдерживания, направленных на предотвращение атак (наличие на борту судна вооруженной охраны, помощь военных кораблей и вертолетов).
Ключевые слова: математическая модель, пираты, морские террористы, силовой акт, блокирование, нейтрализация, вероятностная модель, оценка параметров. -
Использование разностных схем для уравнения переноса со стоком при моделировании энергосетей
Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1149-1164Современные системы транспортировки электроэнергии представляют собой сложные инженерные системы. В состав таких систем входят как точечные объекты (производители электроэнергии, потребители, трансформаторные подстанции), так и распределенные (линии электропередач). При создании математических моделей такие сооружения представляются в виде графов с различными типами узлов. Для исследования динамических эффектов в таких системах приходится решать численно систему дифференциальных уравнений в частных производных гиперболического типа.
В работе использован подход, аналогичный уже примененным ранее при моделировании подобных задач. Использован вариант метода расщепления. Авторами предложен свой способ расщепления. В отличие от большинства известных работ расщепление проводится не по физическим процессам (перенос без диссипации, отдельно диссипативные процессы), а на перенос со стоковыми членами и «обменную» часть. Такое расщепление делает возможным построение гибридных схем для инвариантов Римана, обладающих высоким порядком аппроксимации и минимальной диссипативной погрешностью. Для однофазной ЛЭП приведен пример построения такой гибридной разностной схемы. Предложенная разностная схема строится на основе анализа свойств схем в пространстве неопределенных коэффициентов.
Приведены примеры расчетов модельной задачи с использованием предложенного расщепления и построенной разностной схемы. На примере численных расчетов показано, что разностная схема позволяет численно воспроизводить возникающие области больших градиентов. Показано, что разностная схема позволяет обнаружить резонансы в подобных системах.
-
Нечеткое моделирование восприимчивости человека к паническим ситуациям
Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 203-218Изучение механизма развития массовой паники ввиду ее чрезвычайной значимости и социальной опасности представляет собой важную научную задачу. Имеющаяся информация о механизме ее разви- тия основана в основном на работах специалистов-психологов и относится к разряду неточной. Поэтому в качестве инструмента для разработки математической модели восприимчивости человека к паническим ситуациям выбрана теория нечетких множеств.
В результате проведенного исследования разработана нечеткая модель, состоящая из следующих блоков: «Фаззификация», где происходит вычисление степени принадлежности значений входных пара- метров к нечетким множествам; «Вывод», где на основе степени принадлежности входных параметров вычисляется результирующая функция принадлежности выходного значения нечеткой модели; «Дефаззификация», где с помощью метода центра тяжести определяется единственное количественное значение выходной переменной, характеризующей восприимчивость человека к паническим ситуациям.
Так как реальные количественные значения для лингвистических переменных психических свойств человека неизвестны, то оценить качество разработанной модели, создавая настоящую ситуацию страха и паники, не подвергая людей опасности, не представляется возможным. Поэтому качество результатов нечеткого моделирования оценивалось по расчетному значению коэффициента детерминации, показавшего, что разработанная нечеткая модель относится к разряду моделей хорошего качества $(R^2 = 0.93)$, что подтверждает правомерность принятых допущений при ее разработке.
Согласно результатам моделирования восприимчивость человека к паническим ситуациям для сангвинического и холерического видов темперамента в соответствии с принятой классификацией можно отнести к повышенной (0.88), а для флегматического и меланхолического — к умеренной (0.38). Это означает, что холерики и сангвиники могут стать эпицентрами распространения паники и инициаторами возникновения давки, а флегматики и меланхолики — препятствиями на путях эвакуации, что необходимо учитывать при разработке эффективных эвакуационных мероприятий, главной задачей которых является быстрая и безопасная эвакуация людей из неблагоприятных условий.
В утвержденных методиках расчет нормативных значений параметров безопасности основан на упрощенных аналитических моделях движения людского потока, потому что приходится учитывать большое число факторов, часть которых являются количественно неопределенными. Полученный результат в виде количественных оценок восприимчивости человека к паническим ситуациям позволит повысить точность расчетов.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"