Текущий выпуск Номер 3, 2020 Том 12
Результаты поиска по 'субстрат':
Найдено статей: 10
  1. От редакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 853-855
    Просмотров за год: 6.
  2. От редакции
    Компьютерные исследования и моделирование, 2019, т. 11, № 4, с. 559-561
    Просмотров за год: 4.
  3. Минкевич И.Г.
    Неполные системы линейных уравнений с ограничениями на переменные
    Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 719-745

    Сформулирована задача описания объектов различной природы на основе системы линейных уравнений, в которой число неизвестных превосходит число уравнений. Важной особенностью такой задачи, существенно усложняющей ее решение, являются ограничения на значения ряда переменных. Примером такой задачи является выбор биохимических реакций, осуществляющих преобразование заданного субстрата (исходного вещества) в заданный продукт. В этом случае неизвестными являются скорости биохимических реакций, образующие искомый вектор решения. Компоненты этого вектора в описываемом подходе разделяются на две группы: 1) задаваемые, $\vec{y}$; 2) зависящие от задаваемых, $\vec{x}$. Изучены варианты конфигурации области допустимых значений $\vec{y}$, следующие из ограничений, наложенных на компоненты $\vec{x}$. Выявлено, что часть ограничений могут быть излишними и поэтому исключенными из рассмотрения, что упрощает решение задачи. Анализируются случаи, когда два или более ограничений на $\vec{x}$ приводят к появлению жестких связей между компонентами $\vec{y}$. Описаны методы поиска базисных решений, учитывающие особенности данной задачи. Постановка общей задачи и полученные решения проиллюстрированы биохимическим примером.

    Просмотров за год: 24. Цитирований: 3 (РИНЦ).
  4. Минкевич И.Г.
    Стехиометрический синтез метаболических путей
    Компьютерные исследования и моделирование, 2015, т. 7, № 6, с. 1241-1267

    Описан векторно-матричный подход для теоретического конструирования метаболических путей, превращающих химические соединения, а именно заданные субстраты, в желаемые продукты. Это математическая основа для генерирования альтернативных наборов биохимических реакций, выполняющих заданное превращение «субстрат–продукт». Эти пути получаются из применяемой базы данных по биохимическим реакциям и используют стехиометрию и ограничения, основанные на необратимости некоторых реакций. Показано, что число ограничений может быть заметно снижено благодаря существованию семейств параллельных ограничительных плоскостей в пространстве потоков через реакции. Совпадающие плоскости с противоположными направлениями ограничений приводят к существованию фиксированных значений потоков через реакции. Рассмотрена также задача исключения так называемых футильных циклов. Использование этих факторов позволяет существенно снизить сложность задачи и необходимые вычислительные ресурсы. Приведен пример альтернативных биохимических путей превращения глюкозы и глицерина в янтарную кислоту. Обнаружено, что для заданной пары «субстрат–продукт» многие пути имеют один и тот же баланс макроэргических связей.

    Просмотров за год: 6. Цитирований: 3 (РИНЦ).
  5. Холявка М.Г., Ковалева Т.А., Хрупина Е.А., Артюхов В.Г.
    Компьютерный анализ первичных структур инулиназ из различных продуцентов
    Компьютерные исследования и моделирование, 2011, т. 3, № 1, с. 85-92

    Установлено, что основное количество гомологичных звеньев у инулиназ из различных продуцентов представлено остатками Gln, Asn и Glu. Карбоксильные группы боковых радикалов Asp и Glu, входящих в состав активных центров инулиназ, могут играть роль контактных групп для молекул субстрата, а также осуществлять кислотно-основный катализ. Сопоставление первичных структур инулиназ показало, что частота замен остатков на протяжении полипептидных цепей отличается высокой вариабельностью. Построено филогенетическое дерево инулиназ из различных источников. Выявлено, что высокая степень гомологии характерна для ферментов из Aspergillus awamori, Aspergillus niger и Aspergillus ficuum. Показано, что относительно небольшим родством обладают эндо- и экзоинулиназы.

    Просмотров за год: 2. Цитирований: 4 (РИНЦ).
  6. Королев С.А., Майков Д.В.
    Решение задачи оптимального управления процессом метаногенеза на основе принципа максимума Понтрягина
    Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 357-367

    В работе представлена математическая модель, описывающая процесс получения биогаза из отходов животноводства. Данная модель описывает процессы, протекающие в биогазовой установке для мезофильной и термофильной сред, а также для непрерывного и периодического режимов поступления субстрата. Приведены найденные ранее для периодического режима значения коэффициентов этой модели, полученные путем решения задачи идентификации модели по экспериментальным данным с использованием генетического алгоритма.

    Для модели метаногенеза сформулирована задача оптимального управления в форме задачи Лагранжа, критериальный функционал которой представляет собой выход биогаза за определенный промежуток времени. Управляющим параметром задачи служит скорость поступления субстрата в биогазовую установку. Предложен алгоритм решения данной задачи, основанный на численной реализации принципа максимума Понтрягина. При этом в качестве метода оптимизации применялся гибридный генетический алгоритм с дополнительным поиском в окрестности лучшего решения методом сопряженных градиентов. Данный численный метод решения задачи оптимального управления является универсальным и применим к широкому классу математических моделей.

    В ходе исследования проанализированы различные режимы подачи субстрата в метантенк, температурные среды и виды сырья. Показано, что скорость образования биогаза при непрерывном режиме подачи сырья в 1.4–1.9 раза выше в мезофильной среде (в 1.9–3.2 — в термофильной среде), чем при периодическом режиме за период полной ферментации, что связано с большей скоростью подачи субстрата и большей концентрацией питательных веществ в субстрате. Однако выход биогаза за период полной ферментации при периодическом режиме вдвое выше выхода за период полной смены субстрата в метантенке при непрерывном режиме, что означает неполную переработку субстрата во втором случае. Скорость образования биогаза для термофильной среды при непрерывном режиме и оптимальной скорости подачи сырья втрое выше, чем для мезофильной среды. Сравнение выхода биогаза для различных типов сырья показывает, что наибольший выход биогаза наблюдается для отходов птицефабрик, наименьший — для отходов ферм КРС, что связано с содержанием питательных веществ в единице субстрата каждого вида.

  7. Минкевич И.Г.
    Влияние метаболизма клеток на выход биомассы при росте на различных субстратах
    Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 993-1014

    Рассмотрены биоэнергетические закономерности, определяющие максимальный выход биомассы при аэробном росте микроорганизмов на различных субстратах. Подход основан на методе материально- энергетического баланса и использовании пакета компьютерных программ GenMetPath. Сформулирована система уравнений, описывающих балансы количеств (1) восстановленности метаболитов и (2) образованных и затраченных макроэргических связей. Чтобы сформулировать эту систему, целостный метаболизм разделен на конструктивный и энергетический парциальные обмены. Конструктивный обмен, в свою очередь, разделен на две части: передний и стандартный конструктивные обмены. Последнее разделение основано на выборе узловых метаболитов. Передний конструктивный обмен существенно зависит от субстрата роста: он превращает субстрат в стандартный набор узловых метаболитов. Последний затем превращается в макромолекулы биомассы стандартным конструктивным обменом, который одинаков на различных субстратах. Показано, что вариации потоков через узловые метаболиты оказывают незначительное влияние на стандартный конструктивный обмен. В качестве отдельного случая рассмотрен рост на субстратах, требующих участия оксигеназ и/или оксидаз. Биоэнергетические характеристики стандартного конструктивного обмена найдены из большого числа данных для роста различных организмов на глюкозе. Описанный подход может быть использован для предсказания выхода биомассы на субстратах с известными реакциями их первичной метаболизации. В качестве примера рассмотрен рост культуры дрожжей на этаноле. Значение максимального выхода, предсказанное описанным здесь методом, показало хорошее соответствие значению, найденному экспериментально.

    Просмотров за год: 17.
  8. Выход биомассы — отношение вновь синтезированного вещества растущих клеток к количеству потребленного субстрата — источника вещества и энергии для роста клеток. Выход является характеристикой эффективности конверсии субстрата в биомассу. Эта конверсия выполняется метаболизмом, который является полным множеством биохимических реакций, происходящих в клетках.

    В этой работе заново рассмотрена проблема предсказания максимального выхода роста живых клеток, основанная на балансе всего метаболизма клеток и его фрагментов, названных парциальными обменами (ПО). Для рассмотрения задачи использованы следующие ПО. При росте на любом субстрате мы рассматриваем стандартный конструктивный обмен (СКО), который состоит из одинаковых метаболических путей при росте различных организмов на любом субстрате. СКО начинается с нескольких стандартных соединений (узловых метаболитов): глюкоза, ацетил-КоА, $\alpha$-кетоглутарат, эритрозо-4-фосфат, оксалоацетат, рибозо-5-фосфат, 3-фосфоглицерат, фосфоенолпируват, пируват. Также рассматриваем передний метаболизм (ПМ) — остальная часть полного метаболизма. Первый ПО потребляет макроэргические связи (МЭС), образованные вторым ПО. В данной работе мы рассматриваем обобщенный вариант ПМ, когда учтены возможное наличие внеклеточных продуктов метаболизма и возможность как аэробного, так и анаэробного роста. Вместо отдельных балансов образования каждого узлового метаболита, как это было сделано в нашей предыдущей работе, данная работа имеет дело сразу со всем множеством этих метаболитов. Это делает решение задачи более компактным и требующим меньшего числа биохимических величин и значительно меньшего вычислительного времени. Выведено уравнение, выражающее максимальный выход биомассы через удельные количества МЭС, образованных и потребленных парциальными обменами. Оно содержит удельное потребление МЭС стандартным конструктивным обменом, которое является универсальным биохимическим параметром, применимым к широкому диапазону организмов и субстратов роста. Чтобы корректно определить этот параметр, полный конструктивный обмен и его передняя часть рассмотрены для роста клеток на глюкозе как наиболее изученном субстрате. Здесь мы использовали открытые ранее свойства элементного состава липидной и безлипидной частей биомассы. Было сделано численное исследование влияния вариаций соотношений между потоками через различные узловые метаболиты. Оно показало, что потребности СКО в макроэргических связях и NAD(P)H практически являются константами. Найденный коэффициент «МЭС/образованная биомасса» является эффективным средством для нахождения оценок максимального выхода биомассы из субстратов, для которых известен их первичный метаболизм. Вычисление отношения «АТФ/субстрат», необходимого для оценки выхода биомассы, сделано с помощью специального пакета компьютерных программ GenMetPath.

    Просмотров за год: 2.
  9. Королев С.А., Майков Д.В.
    Идентификация математической модели и исследование различных режимов метаногенеза в мезофильной среде
    Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 131-141

    Предложена математическая модель процесса получения биогаза из отходов животноводства. Разработан алгоритм идентификации параметров модели. Проведена оценка точности идентификации модели. Приведены результаты моделирования для периодического и непрерывного режимов подачи субстрата. Найдена оптимальная скорость подачи субстрата для непрерывного режима.

    Просмотров за год: 10. Цитирований: 10 (РИНЦ).
  10. Вигонт В.А., Миронычева Е.С., Топаж А.Г.
    Модификация модели роста грибов Чантера–Торнли и ее анализ средствами многоподходного имитационного моделирования
    Компьютерные исследования и моделирование, 2015, т. 7, № 2, с. 375-385

    Классическая математическая модель выращивания грибов Чантера–Торнли модифицирована и реализована в среде имитационного моделирования AnyLogic с одновременным использованием элементов системной динамики, дискретно-событийного и агентного подхода. Проведено численное исследование построенной модели и решена оптимизационная задача нахождения возраста срезания плодовых тел, обеспечивающего максимальный интегральный урожай грибов по всем «волнам» плодообразования.

    Просмотров за год: 3. Цитирований: 3 (РИНЦ).

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал входит в Перечень российских рецензируемых научных журналов, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученых степеней доктора и кандидата наук ВАК, группы специальностей: 01.01.00, 01.02.00.
 

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал индексируется в Scopus