Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'модели':
Найдено статей: 699
  1. Grid’2014
    Компьютерные исследования и моделирование, 2015, т. 7, № 3 с.
    Просмотров за год: 2.
  2. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 209-212
  3. Грачев В.А., Найштут Ю.С.
    Континуальные трансформирующиеся оболочки из тонких пластин
    Компьютерные исследования и моделирование, 2011, т. 3, № 1, с. 3-29

    Изучаются трансформирующиеся системы, собранные из трапециевидных пластин. При развертывании пакета пластинок образуется сетчатая оболочка с шестигранными ячейками. Доказывается, что при определенных соотношениях размеров граней в шестизвенниках появляются дополнительные внутренние степени свободы. Если же используются тонкие пластинки, то континуальная аппроксимация развернутой сети может интерпретироваться как оболочка с широким набором локальных кривизн. Строится кинематика континуальной модели методом подвижного репера Картана. Изучается механическое поведение континуальных сетей, если цилиндрические шарниры между пластинами выполнены из пластических материалов, обладающих памятью формы. Исследуются переходы оболочек из одной равновесной формы в другую. Показаны возможные практические применения континуальных сетей.

    Цитирований: 3 (РИНЦ).
  4. Поддубный В.В., Поликарпов А.А.
    Диссипативная стохастическая динамическая модель развития языковых знаков
    Компьютерные исследования и моделирование, 2011, т. 3, № 2, с. 103-124

    Предлагается диссипативная стохастическая динамическая модель эволюции языковых знаков, удовлетворяющая принципу «наименьшего действия» — одному из фундаментальных вариационных принципов природы. Модель предполагает пуассоновский характер потока рождения языковых знаков, экспоненциальное (показательное) распределение ассоциативно-семантического потенциала (АСП) знака и оперирует разностными стохастическими уравнениями специального вида для диссипативных процессов. Получаемые из модели распределения полисемии и частотно-ранговые распределения языковых знаков статистически значимо (по критерию Колмогорова–Смирнова) не отличаются от эмпирических распределений, полученных из представительных толковых и частотных словарей русского и английского языков.

    Просмотров за год: 1. Цитирований: 6 (РИНЦ).
  5. Борина М.Ю., Полежаев А.А.
    О механизме переключения стоячей волны в бегущую, сопровождающегося делением длины волны пополам
    Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 673-679

    В данной работе предложен возможный механизм перехода из режима стоячих волн с длиной волны λSW в режим бегущих волн с половинной длиной волны: λTW ≅λSW / 2. Такой переход был обнаружен в пространственно распределенной реакции Белоусова–Жаботинского, диспергированной в обращенной микроэмульсии аэрозоля OT [Kaminaga el al., 2005]. Задача решалась в пространственно одномерном случае с использованием аппарата амплитудных уравнений типа Гинзбурга–Ландау. Показано, что переход возможен при выполнении определенных условий. Выведены условия на силы связи между взаимодействующими модами, при выполнении которых в модели реализуется сценарий перехода от стоячей к бегущей волне половинного периода, наблюдаемый в эксперименте. Результат теоретического анализа подтверждается численным моделированием.

    Просмотров за год: 2. Цитирований: 1 (РИНЦ).
  6. Стеряков А.А.
    Об одном универсальном методе построения моделей для сложных многоагентных систем
    Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 513-523

    Врабо те предлагается универсальный метод построения агентных имитационных моделей сложных систем, предполагающий их компьютерную реализацию на языках объектноориентированного программирования. Метод определяет способ построения математических моделей агентов и их взаимодействия, а также описывает архитектуру комплекса программ для имитации динамики моделируемой системы. Эффективность предлагаемого метода иллюстрируется примерами его применения для моделирования сложных систем из двух областей: экономической (модель финансового рынка с неоднородными агентами) и биологической (пространственно-временная имитация взаимодействия биологических популяций).

    Просмотров за год: 5. Цитирований: 2 (РИНЦ).
  7. От редакции
    Компьютерные исследования и моделирование, 2013, т. 5, № 6, с. 905-905
  8. Малинецкий Г.Г., Фаллер Д.С.
    Переход к хаосу в системах «реакция–диффузия». Простейшие модели
    Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 3-12

    В работе рассматривается появление хаотических аттракторов в системе трех обыкновенных дифференциальных уравнений, возникающих в теории систем «реакция–диффузия». Исследуются динамика соответствующих одномерных и двумерных отображений и ляпуновские показатели возникающих аттракторов. Показано, что переход к хаосу происходит по нетрадиционному сценарию, связанному с многократным рождением и исчезновением хаотических режимов, который ранее был изучен для одномерных отображений с острой вершиной и квадратичным минимумом. С помощью численного анализа были исследованы характерные особенности системы: наличие областей бистабильности и гиперболичности, кризис хаотических аттракторов.

    Просмотров за год: 6. Цитирований: 1 (РИНЦ).
  9. Решена задача восстановления элемента f бесконечномерного гильбертова пространства L2(X) по результатам измерений конечного набора его линейных функционалов, искаженным (случайной) погрешностью без априорных данных об f, получено семейство линейных подпространств максимальной размерности, проекции элемента f на которые допускают оценки с заданной точностью. Эффективный ранг ρ(δ) задачи оценивания определен как функция, равная максимальной размерности ортогональной составляющей Pf элемента f, которая может быть оценена с погрешностью, не превосходящей δ. Приведен пример восстановления спектра излучения по конечному набору экспериментальных данных.

  10. Рассматривается эффект Эйнштейна, Подольского, Розена в его связи с квантовой механикой и теорией относительности. Показано, что если ввести в квантовую механику понятие индивидуального состояния квантовой частицы в ансамбле, то можно устранить противоречие с теорией относительности, которое получило название дальнодействия между коррелированными частицами. В работе развит аппарат введения индивидуального состояния в формализм квантовой механики. Строится модель эффекта ЭПР, не содержащая противоречия. Анализируется общий механизм формирования законов теории вероятности в квантовой механике, примером которого является нарушение неравенств Белла для скрытых параметров.

    Просмотров за год: 1.
Страницы: следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.