Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Смешанный алгоритм расчета динамики переноса заряда в ДНК на больших временных интервалах
Компьютерные исследования и моделирование, 2010, т. 2, № 1, с. 63-72Перенос заряда в ДНК моделируется с помощью дискретной модели Холстейна «квантовая частица + классическая цепочка сайтов + взаимодействие». Влияние температуры термостата учитывается с помощью случайной силы, действующей на классические сайты (уравнение Ланжевена). Таким образом, динамика распространения заряда вдоль цепочки описывается системой ОДУ со случайной правой частью. Для интегрирования таких систем обычно применяют алгоритмы 1 или 2 порядка. Мы разработали смешанный алгоритм, имеющий 4 порядок точности по быстрым «квантовым» переменным (заметим, что в «квантовой» подсистеме должно соблюдаться условие: «сумма вероятностей нахождения заряда на сайте постоянна по времени») и 2 порядок по медленным «классическим» переменным, на которые действует случайная сила. Алгоритм позволяет считать на бóльших временах, чем стандартные. В качестве примера приведен модельный расчет развала полярона в однородной цепочке под действием температурных флуктуаций.
Ключевые слова: ДНК, модель Холстейна, уравнение Ланжевена, алгоритм интегрирования ОДУ со случайной правой частью.
Mixed algorithm for modeling of charge transfer in DNA on long time intervals
Computer Research and Modeling, 2010, v. 2, no. 1, pp. 63-72Просмотров за год: 2. Цитирований: 2 (РИНЦ).Charge transfer in DNA is simulated by a discrete Holstein model «quantum particle + classical site chain + interaction». Thermostat temperature is taken into account as stochastic force, which acts on classical sites (Langevin equation). Thus dynamics of charge migration along the chain is described by ODE system with stochastic right-hand side. To integrate the system numerically, algorithms of order 1 or 2 are usually applied. We developed «mixed» algorithm having 4th order of accuracy for fast «quantum» variables (note that in quantum subsystem the condition «sum of probabilities of charge being on site is time-constant» must be held), and 2nd order for slow classical variables, which are affecting by stochastic force. The algorithm allows us to calculate trajectories on longer time intervals as compared to standard algorithms. Model calculations of polaron disruption in homogeneous chain caused by temperature fluctuations are given as an example.
-
Математическое моделирование нейтронных передач в ядерных реакциях с учетом спин-орбитального взаимодействия
Компьютерные исследования и моделирование, 2010, т. 2, № 4, с. 393-401На основе метода расщепления для нестационарного уравнения Шредингера предложена разностная схема численного решения нестационарной системы двух уравнений Шредингера с оператором спин-орбитального взаимодействия для двухкомпонентной спинорной волновой функции. Выполнено компьютерное моделирование эволюции волновых функций внешних нейтронов с различными проекциями полного момента на межъядерную ось и вероятности их передачи при лобовых столкновениях ядер 18O и 58Ni.
Ключевые слова: столкновения тяжелых ядер, компьютерные методы решения уравнения Шредингера.
Mathematical modeling of neutron transfers in nuclear reactions considering spin-orbit interaction
Computer Research and Modeling, 2010, v. 2, no. 4, pp. 393-401Просмотров за год: 4.The difference scheme for numerical solution of a time-dependant system of two Schrödinger equations with the operator of a spin-orbit interaction for a two-component spinor wave function is offered on the basis of a split method for a time-dependant Schrödinger equations. The computer simulation of the external neutrons’ wave functions evolution with different values of the full moment projection upon internuclear axis and probabilities of their transfer are executed for head-on collisions of 18O and 58Ni nuclei.
-
Эффект возбуждения подкритических колебаний в стохастических системах с запаздыванием. Часть I. Регуляция экспрессии генов
Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 421-438В работе рассматривается возбуждение колебаний в стохастических генных системах с запаздывающей обратной связью в процессах транскрипции. Колебания возникают из-за взаимодействия шума и запаздывания даже при значениях параметров, когда детерминистское описание предсказывает стационарное поведение. Эффект наиболее ярко проявляет себя, когда количество степеней свободы у системы невелико и роль флуктуаций становится принципиальной. Получено аналитическое решение мастер-уравнения. Приводятся результаты численного моделирования.
Effect of subcritical excitation of oscillations in stochastic systems with time delay. Part I. Regulation of gene expression
Computer Research and Modeling, 2011, v. 3, no. 4, pp. 421-438Просмотров за год: 6. Цитирований: 12 (РИНЦ).We study excitation of oscillations in the stochastic gene systems with time-delayed feedback loop during transcription. The oscillations arise due to interaction noise and time delay even when deterministic counterpart of the system exhibits stationary behaviour. This effect becomes important when degree-of-freedom of a system is not high, and role of fluctuations becomes principal. The analytical solution of master-equation is obtained. The results of numerical simulations are presented.
-
Моделирование влияния подвижности особей на пространственно-временную динамику популяции на основе компьютерной модели
Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 297-305В статье предложена компьютерная модель, описывающая пространственно-временную динамику популяции, взаимодействующей с возобновимым ресурсом. Подробно описан жизненный цикл особи. Предложен алгоритм пространственного перемещения особей по ареалу, учитывающий пищевую и социальную активность. Описаны вычислительные эксперименты с моделью, которые имитируют движения стада животных по ареалу, а также описан модельный эксперимент, когда групповой тип поведения животных вследствие изменения характеристик окружающей среды становится индивидуальным, после чего из-за изменения в параметрах окружающей среды и поведении животных формируется стадо, которое в дальнейшем переходит снова к групповому типу поведения.
Modeling the impact of mobility of individuals on space-time dynamics of a population by means of a computer model
Computer Research and Modeling, 2016, v. 8, no. 2, pp. 297-305Просмотров за год: 2. Цитирований: 3 (РИНЦ).A computer model describing the spatial-temporal dynamics of populations of interacting with renewable resource is proposed. The life cycle of the individual is described. The algorithm for spatial mobility of individuals within an area is proposed, which takes into account nutritional and social activity. The paper presents the computational experiments with the model that mimic the movement of herds of animals in the area, and describes the model experiment when the group type of animal behavior due to changes in the characteristics of the environment and animal behavior the herd animals is formed, which later goes again in the group type of animal behavior.
-
Математическое моделирование неньютоновского потока крови в дуге аорты
Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 259-269Целью проведенного исследования была разработка математической модели пульсирующего течения крови по участку аорты, включающему восходящий отдел, дугу аорты с ее ответвлениями и верхнюю часть нисходящего отдела. Поскольку при прохождении пульсовой волны деформации этой наиболее твердой части аорты малы, то при построении механической модели ее стенки считались абсолютно твердыми. В статье приводится описание внутренней структуры крови и ряда внутриструктурных эффектов. Этот анализ показывает, что кровь, которая по существу является суспензией, можно рассматривать только как неньютоновскую жидкость. Кроме того, кровь можно считать жидкостью только в кровеносных сосудах, диаметр которых намного больше характерного размера клеток крови и их агрегатных образований. В качестве неньютоновской жидкости была выбрана вязкая жидкость со степенным законом связи напряжения со скоростью деформации. Этот закон позволяет описывать поведение не только жидкостей, но и суспензий. При постановке граничного условия на входе в аорту, отражающего пульсирующий характер течения крови, было решено не ограничиваться заданием совокупного потока крови, который не дает представления о пространственном распределении скорости по поперечному сечению. В связи с этим было предложено моделировать огибающую поверхность этого пространственного распределения частью параболоида вращения с фиксированным радиусом основания и высотой, которая меняется во времени от нуля до максимального значения скорости. Для граничного условия на стенке сосуда предлагается использовать условие полупроскальзывания. Это связано с тем, что клетки крови, в силу своих электрохимических свойств, не прилипают к внутреннему слою сосуда. На внешних концах аорты и ее ответвлений задавалась величина давления. Для выполнения вычислений была построена геометрическая модель рассматриваемой части аорты с ответвлениями, на которую была нанесена тетраэдальная сетка с общим числом элементов 9810. Вычисления производились методом конечных элементов с шагом по времени 0.01 с с использованием пакета ABAQUS. В результате было получено распределение скоростей и давления на каждом шаге по времени. В областях ветвления сосудов было обнаружено вре́менное наличие вихрей и обратных течений. Они зарождались через 0.47 с от начала пульсового цикла и исчезали спустя 0.14 с.
Ключевые слова: математическое моделирование, течение крови, дуга аорты, распределение скорости и напряжения.
Mathematical modelling of the non-Newtonian blood flow in the aortic arc
Computer Research and Modeling, 2017, v. 9, no. 2, pp. 259-269Просмотров за год: 13.The purpose of research was to develop a mathematical model for pulsating blood flow in the part of aorta with their branches. Since the deformation of this most solid part of the aorta is small during the passage of the pulse wave, the blood vessels were considered as non-deformable curved cylinders. The article describes the internal structure of blood and some internal structural effects. This analysis shows that the blood, which is essentially a suspension, can only be regarded as a non-Newtonian fluid. In addition, the blood can be considered as a liquid only in the blood vessels, diameter of which is much higher than the characteristic size of blood cells and their aggregate formations. As a non-Newtonian fluid the viscous liquid with the power law of the relationship of stress with shift velocity was chosen. This law can describe the behaviour not only of liquids but also dispersions. When setting the boundary conditions at the entrance into aorta, reflecting the pulsating nature of the flow of blood, it was decided not to restrict the assignment of the total blood flow, which makes no assumptions about the spatial velocity distribution in a cross section. In this regard, it was proposed to model the surface envelope of this spatial distribution by a part of a paraboloid of rotation with a fixed base radius and height, which varies in time from zero to maximum speed value. The special attention was paid to the interaction of blood with the walls of the vessels. Having regard to the nature of this interaction, the so-called semi-slip condition was formulated as the boundary condition. At the outer ends of the aorta and its branches the amounts of pressure were given. To perform calculations the tetrahedral computer network for geometric model of the aorta with branches has been built. The total number of meshes is 9810. The calculations were performed with use of the software package ABACUS, which has also powerful tools for creating geometry of the model and visualization of calculations. The result is a distribution of velocities and pressure at each time step. In areas of branching vessels was discovered temporary presence of eddies and reverse currents. They were born via 0.47 s from the beginning of the pulse cycle and disappeared after 0.14 s.
-
Моделирование межпроцессорного взаимодействия при выполнении MPI-приложений в облаке
Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 955-963В Лаборатории информационных технологий (ЛИТ) Объединенного института ядерных исследований (ОИЯИ) планируется создание облачного центра параллельных вычислений, что позволит существенно повысить эффективность выполнения численных расчетов и ускорить получение новых физически значимых результатов за счет более рационального использования вычислительных ресурсов. Для оптимизации схемы параллельных вычислений в облачной среде эту схему необходимо протестировать при различных сочетаниях параметров оборудования (количества и частоты процессоров, уровней распараллеливания, пропускной способности коммуникационной сети и ее латентности). В качестве тестовой была выбрана весьма актуальная задача параллельных вычислений длинных джозефсоновских переходов (ДДП) с использованием технологии MPI. Проблемы оценки влияния вышеуказанных факторов вычислительной среды на скорость параллельных вычислений тестовой задачи было предложено решать методом имитационного моделирования, с использованием разработанной в ЛИТ моделирующей программы SyMSim.
Работы, выполненные по имитационному моделированию расчетов ДДП в облачной среде с учетом межпроцессорных соединений, позволяют пользователям без проведения серии тестовых запусков в реальной компьютерной обстановке подобрать оптимальное количество процессоров при известном типе сети, характеризуемой пропускной способностью и латентностью. Это может существенно сэкономить вычислительное время на счетных ресурсах, высвободив его для решения реальных задач. Основные параметры модели были получены по результатам вычислительного эксперимента, проведенного на специальном облачном полигоне для MPI-задач из 10 виртуальных машин, взаимодействующих между собой через Ethernet-сеть с пропускной способностью 10 Гбит/с. Вычислительные эксперименты показали, что чистое время вычислений спадает обратно пропорционально числу процессоров, но существенно зависит от пропускной способности сети. Сравнение результатов, полученных эмпирическим путем, с результатами имитационного моделирования показало, что имитационная модель корректно моделирует параллельные расчеты, выполненные с использованием технологии MPI, и подтвердило нашу рекомендацию, что для быстрого счета задач такого класса надо одновременно с увеличением числа процессоров увеличивать пропускную способность сети. По результатам моделирования удалось вывести эмпирическую аналитическую формулу, выражающую зависимость времени расчета от числа процессоров при фиксированной конфигурации системы. Полученная формула может применяться и для других подобных исследований, но требует дополнительных тестов по определению значений переменных.
Simulation of interprocessor interactions for MPI-applications in the cloud infrastructure
Computer Research and Modeling, 2017, v. 9, no. 6, pp. 955-963Просмотров за год: 10. Цитирований: 1 (РИНЦ).А new cloud center of parallel computing is to be created in the Laboratory of Information Technologies (LIT) of the Joint Institute for Nuclear Research JINR) what is expected to improve significantly the efficiency of numerical calculations and expedite the receipt of new physically meaningful results due to the more rational use of computing resources. To optimize a scheme of parallel computations at a cloud environment it is necessary to test this scheme for various combinations of equipment parameters (processor speed and numbers, throughput оf а communication network etc). As a test problem, the parallel MPI algorithm for calculations of the long Josephson junctions (LDJ) is chosen. Problems of evaluating the impact of abovementioned factors of computing mean on the computing speed of the test problem are solved by simulation with the simulation program SyMSim developed in LIT.
The simulation of the LDJ calculations in the cloud environment enable users without a series of test to find the optimal number of CPUs with a certain type of network run the calculations in a real computer environment. This can save significant computational time in countable resources. The main parameters of the model were obtained from the results of the computational experiment conducted on a special cloud-based testbed. Computational experiments showed that the pure computation time decreases in inverse proportion to the number of processors, but depends significantly on network bandwidth. Comparison of results obtained empirically with the results of simulation showed that the simulation model correctly simulates the parallel calculations performed using the MPI-technology. Besides it confirms our recommendation: for fast calculations of this type it is needed to increase both, — the number of CPUs and the network throughput at the same time. The simulation results allow also to invent an empirical analytical formula expressing the dependence of calculation time by the number of processors for a fixed system configuration. The obtained formula can be applied to other similar studies, but requires additional tests to determine the values of variables.
-
Некоторые особенности групповой динамики в агентной модели «ресурс–потребитель»
Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 833-850В работе исследуются особенности групповой динамики особей-агентов в компьютерной модели популяции животных, взаимодействующих между собой и с возобновимым ресурсом. Такого типа динамика были ранее обнаружены в работе [Белотелов, Коноваленко, 2016]. Модельная популяция состоит из совокупности особей. Каждая особь характеризуется своей массой, которая отождествляется с энергией. В ней подробно описана динамика энергетического баланса особи. Ареал обитания моделируемой популяции представляет собой прямоугольную область, на которой равномерно произрастает ресурс (трава).
Описываются различные компьютерные эксперименты, проведенные с моделью при различных значениях параметров и начальных условиях. Основной целью проведения этих вычислительных экспериментов было изучение групповой (стадной) динамики особей. Выяснилось, что в достаточно широком диапазоне значений параметров и при введении пространственных неоднородностей ареала групповой тип поведения сохраняется. Численно были найдены значения параметров модельной популяции, при которых возникает режим пространственных колебаний численности. А именно, в модельной популяции периодически групповое (стадное) поведение животных сменяется на равномерное по пространству распределение, которое через определенное количество тактов вновь становится групповым. Проведены численные эксперименты по предварительному анализу факторов, влияющих на период этих решений. Оказалось, что ведущими параметрами, влияющими на частоту и амплитуду, а также на количество групп, являются подвижность особей и скорость восстановления ресурса. Проведены численные эксперименты по исследованию влияния на групповое поведение параметров, определяющих нелокальное взаимодействие между особями популяции. Обнаружено, что режимы группового поведения сохраняются достаточно длительное время при исключении факторов рождаемости особей. Подтверждено, что нелокальность взаимодействия между особями является ведущей при формировании группового поведения.
Some features of group dynamics in the resource-consumer agent model
Computer Research and Modeling, 2018, v. 10, no. 6, pp. 833-850Просмотров за год: 32.The paper investigates the features of group dynamics of individuals-agents in the computer model of the animal population interacting with each other and with a renewable resource. This type of dynamics was previously found in [Belotelov, Konovalenko, 2016]. The model population consists of a set of individuals. Each individual is characterized by its mass, which is identified with energy. It describes in detail the dynamics of the energy balance of the individual. The habitat of the simulated population is a rectangular area where the resource grows evenly (grass).
Various computer experiments carried out with the model under different parameter values and initial conditions are described. The main purpose of these computational experiments was to study the group (herd) dynamics of individuals. It was found that in a fairly wide range of parameter values and with the introduction of spatial inhomogeneities of the area, the group type of behavior is preserved. The values of the model population parameters under which the regime of spatial oscillations of the population occurs were found numerically. Namely, in the model population periodically group (herd) behavior of animals is replaced by a uniform distribution over space, which after a certain number of bars again becomes a group. Numerical experiments on the preliminary analysis of the factors influencing the period of these solutions are carried out. It turned out that the leading parameters affecting the frequency and amplitude, as well as the number of groups are the mobility of individuals and the rate of recovery of the resource. Numerical experiments are carried out to study the influence of parameters determining the nonlocal interaction between individuals of the population on the group behavior. It was found that the modes of group behavior persist for a long time with the exclusion of fertility factors of individuals. It is confirmed that the nonlocality of interaction between individuals is leading in the formation of group behavior.
-
Моделирование развития экваториальных плазменных пузырей из плазменных облаков
Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 463-476В работе определяются и изучаются два параметра процесса развития экваториальных плазменных пузырей (ЭПП): максимальная скорость внутри ЭПП и время развития ЭПП. Исследования проводятся для случаев, когда ЭПП возникают из одной, двух или трех зон повышенной концентрации, или начальных плазменных облаков. Механизмом развития ЭПП является неустойчивость Релея–Тэйлора (НРТ). Ранее было выяснено, что время начальной стадии развития ЭПП должно уложиться в интервал времени, благоприятный для формирования ЭПП (в этом случае линейный инкремент нарастания больше нуля). Этот интервал укладывается для экваториальной ионосферы Земли в промежуток от 3000 с до 7000 с.
Исследование проводилось в форме многочисленных вычислительных экспериментов с использованием разработанной авторами оригинальной двумерной математической и численной модели MI2 развития НРТ в экваториальной ионосфере Земли, аналогичной стандартной модели США SAMI2. Эта численно-математическая модель MI2 достаточно подробно описана в основном тексте статьи. Результаты, полученные в ходе проведенных исследований, могут быть использованы как в других теоретических работах, так и при планировании и проведении натурных экспериментов по генерации F-рассеяния в ионосфере Земли.
Численное моделирование проводилось для геофизических условий, благоприятных для развития в экваториальной F-области ионосферы Земли ЭПП в результате НРТ. Численные исследования подтвердили, что время развития ЭПП из начальных неоднородностей с повышенной концентрацией существенно больше времени развития из зон пониженной концентрации. Однако в условиях, благоприятных для НРТ, ЭПП успевают достигнуть достаточно развитого состояния. Численные эксперименты также продемонстрировали, что развитые неоднородности сильно и нелинейно взаимодействуют между собой даже тогда, когда начальные плазменные облака сильно удалены друг от друга. Причем это взаимодействие более сильное, чем при развитии ЭПП из начальных неоднородностей с пониженной концентрацией. Результаты численных экспериментов показали хорошее согласие параметров развитых ЭПП с экспериментальными данными и с теоретическими исследованиями других авторов.
Ключевые слова: ионосфера, математическое моделирование, численное моделирование, неустойчивость Рэлея–Тейлора, начальное возмущение, экваториальный плазменный пузырь, начальное плазменное облако, множественные плазменные пузыри.
Simulation equatorial plasma bubbles started from plasma clouds
Computer Research and Modeling, 2019, v. 11, no. 3, pp. 463-476Просмотров за год: 14.Experimental, theoretical and numerical investigations of equatorial spread F, equatorial plasma bubbles (EPBs), plasma depletion shells, and plasma clouds are continued at new variety articles. Nonlinear growth, bifurcation, pinching, atomic and molecular ion dynamics are considered at there articles. But the authors of this article believe that not all parameters of EPB development are correct. For example, EPB bifurcation is highly questionable.
A maximum speed inside EPBs and a development time of EPB are defined and studied. EPBs starting from one, two or three zones of the increased density (initial plasma clouds). The development mechanism of EPB is the Rayleigh-Taylor instability (RTI). Time of the initial stage of EPB development went into EPB favorable time interval (in this case the increase linear increment is more than zero) and is 3000–7000 c for the Earth equatorial ionosphere.
Numerous computing experiments were conducted with use of the original two-dimensional mathematical and numerical model MI2, similar USA standard model SAMI2. This model MI2 is described in detail. The received results can be used both in other theoretical works and for planning and carrying out natural experiments for generation of F-spread in Earth ionosphere.
Numerical simulating was carried out for the geophysical conditions favorable for EPBs development. Numerical researches confirmed that development time of EPBs from initial irregularities with the increased density is significantly more than development time from zones of the lowered density. It is shown that developed irregularities interact among themselves strongly and not linearly even then when initial plasma clouds are strongly removed from each other. In addition, this interaction is stronger than interaction of EPBs starting from initial irregularities with the decreased density. The numerical experiments results showed the good consent of developed EPB parameters with experimental data and with theoretical researches of other authors.
-
Численные исследования структуры возмущенных областей, образованных мощными взрывами на различных высотах. Обзор
Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 97-140В основу обзора положены некоторые ранние работы авторов, представляющие определенный научный, методический и практический интерес; наибольшее внимание уделено работам последних лет, где выполнены достаточно подробные численные исследования не только одиночных, но также двойных и множественных взрывов в широком диапазоне высот и условий в окружающей среде. Так как в нижней атмосфере ударная волна мощного взрыва является одним из главных поражающих факторов, то в обзоре большое внимание уделено физическому анализу их распространения и взаимодействия. С помощью разработанных авторами трехмерных алгоритмов рассмотрены интересные с физической точки зрения эффекты интерференции и дифракции нескольких ударных волн в отсутствие и при наличии подстилающей поверхности различной структуры. Определены количественные характеристики в области их максимальных значений, что представляет известный практический интерес. Для взрывов в плотной атмосфере найдены некоторые новые аналитические решения на основе метода малых возмущений, удобные для приближенных расчетов. Для ряда условий показана возможность использования автомодельных свойств уравнений первого и второго рода для решения задач о развитии взрыва.
На основе численного анализа показано принципиальное изменение в структуре развития возмущенной области при изменении высоты взрыва в диапазоне 100–120 км. На высотах более 120 км геомагнитное поле начинает влиять на развитие взрыва, поэтому даже для одиночного взрыва картина плазменного течения через несколько секунд становится существенно трехмерной. Для расчета взрывов на высотах 120–1000 км под руководством академика Холодова А. С. был разработан специальный трехмерный численный алгоритм на основе МГД-приближения. Были выполнены многочисленные расчеты и впервые получена достаточно подробная картина трехмерного течения плазмы взрыва с образованием через 5–10 с восходящей струи, направленной в меридиональной плоскости примерно по геомагнитному полю. После некоторой модификации данный алгоритм использовался для расчета двойных взрывов в ионосфере, разнесенных на некоторое расстояние. Взаимодействие между ними осуществлялось как плазменными потоками, так и через геомагнитное поле. Некоторые результаты приведены в данном обзоре и подробно изложены в оригинальных статьях.
Ключевые слова: численное моделирование, взрывы в атмосфере, одиночные и множественные взрывы, ударные волны.
Numerical studies of the structure of perturbed regions formed by powerful explosions at various heights. A review
Computer Research and Modeling, 2020, v. 12, no. 1, pp. 97-140The review is based on some of the authors ’early works of particular scientific, methodological and practical interest and the greatest attention is paid to recent works, where quite detailed numerical studies of not only single, but also double and multiple explosions in a wide range of heights and environmental conditions have been performed . Since the shock wave of a powerful explosion is one of the main damaging factors in the lower atmosphere, the review focuses on both the physical analysis of their propagation and their interaction. Using the three-dimensional algorithms developed by the authors, the effects of interference and diffraction of several shock waves, which are interesting from a physical point of view, in the absence and presence of an underlying surface of various structures are considered. Quantitative characteristics are determined in the region of their maximum values, which is of known practical interest. For explosions in a dense atmosphere, some new analytical solutions based on the small perturbation method have been found that are convenient for approximate calculations. For a number of conditions, the possibility of using the self-similar properties of equations of the first and second kind to solve problems on the development of an explosion has been shown.
Based on numerical analysis, a fundamental change in the structure of the development of the perturbed region with a change in the height of the explosion in the range of 100–120 km is shown. At altitudes of more than 120 km, the geomagnetic field begins to influence the development of the explosion; therefore, even for a single explosion, the picture of the plasma flow after a few seconds becomes substantially three-dimensional. For the calculation of explosions at altitudes of 120–1000 km under the guidance of academician A. Kholodov. A special three-dimensional numerical algorithm based on the MHD approximation was developed. Numerous calculations were performed and for the first time a quite detailed picture of the three-dimensional flow of the explosion plasma was obtained with the formation of an upward jet in 5–10 s directed in the meridional plane approximately along the geomagnetic field. After some modification, this algorithm was used to calculate double explosions in the ionosphere, spaced a certain distance. The interaction between them was carried out both by plasma flows and through a geomagnetic field. Some results are given in this review and are described in detail in the original articles.
-
Кластерный метод математического моделирования интервально-стохастических тепловых процессов в электронных системах
Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1023-1038В работе разработан кластерный метод математического моделирования интервально-стохастических тепловых процессов в сложных технических, в частности электронных, системах (ЭС). В кластерном методе конструкция сложной ЭС представляется в виде тепловой модели, являющейся системой кластеров, каждый из которых содержит ядро, объединяющее в себе тепловыделяющие элементы, попадающие в данный кластер, оболочку кластера и поток среды, протекающий через кластер. Состояние теплового процесса в каждом кластере и в каждый момент времени характеризуется тремя интервально-стохастическими переменными состояния, а именно температурами ядра, оболочки и потока среды. При этом элементы каждого кластера, а именно ядро, оболочка и поток среды, находятся в тепловом взаимодействии между собой и элементами соседних кластеров. В отличие от существующих методов кластерный метод позволяет моделировать тепловые процессы в сложных ЭС с учетом неравномерного распределения температуры в потоке среды нагнетаемой в ЭС, сопряженного характера теплообмена между пото- ком среды в ЭС, ядрами и оболочками кластеров и интервально-стохастического характера тепловых процессов в ЭС, вызванного статистическим технологическим разбросом изготовления и монтажа электронных элементов в ЭС, и случайными флуктуациями тепловых параметров окружающей среды. Математическая модель, описывающая состояния тепловых процессов в кластерной тепловой модели, представляет собой систему интервально-стохастических матрично-блочных уравнений с матричными и векторными блоками, соответствующими кластерам тепловой модели. Решением интервально-стохастических уравнений являются статистические меры переменных состояния тепловых процессов в кластерах — математические ожидания, ковариации между переменными состояния и дисперсии. Методика применения кластерного метода показана на примере реальной ЭС.
Ключевые слова: математическое моделирование, тепловая модель, кластер, электронная система, стохастический, тепловой процесс, статистические меры, математические ожидания, ковариации, дисперсии.
Cluster method of mathematical modeling of interval-stochastic thermal processes in electronic systems
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1023-1038A cluster method of mathematical modeling of interval-stochastic thermal processes in complex electronic systems (ES), is developed. In the cluster method, the construction of a complex ES is represented in the form of a thermal model, which is a system of clusters, each of which contains a core that combines the heat-generating elements falling into a given cluster, the cluster shell and a medium flow through the cluster. The state of the thermal process in each cluster and every moment of time is characterized by three interval-stochastic state variables, namely, the temperatures of the core, shell, and medium flow. The elements of each cluster, namely, the core, shell, and medium flow, are in thermal interaction between themselves and elements of neighboring clusters. In contrast to existing methods, the cluster method allows you to simulate thermal processes in complex ESs, taking into account the uneven distribution of temperature in the medium flow pumped into the ES, the conjugate nature of heat exchange between the medium flow in the ES, core and shells of clusters, and the intervalstochastic nature of thermal processes in the ES, caused by statistical technological variation in the manufacture and installation of electronic elements in ES and random fluctuations in the thermal parameters of the environment. The mathematical model describing the state of thermal processes in a cluster thermal model is a system of interval-stochastic matrix-block equations with matrix and vector blocks corresponding to the clusters of the thermal model. The solution to the interval-stochastic equations are statistical measures of the state variables of thermal processes in clusters - mathematical expectations, covariances between state variables and variance. The methodology for applying the cluster method is shown on the example of a real ES.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"