Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Диссипативная стохастическая динамическая модель развития языковых знаков
Компьютерные исследования и моделирование, 2011, т. 3, № 2, с. 103-124Предлагается диссипативная стохастическая динамическая модель эволюции языковых знаков, удовлетворяющая принципу «наименьшего действия» — одному из фундаментальных вариационных принципов природы. Модель предполагает пуассоновский характер потока рождения языковых знаков, экспоненциальное (показательное) распределение ассоциативно-семантического потенциала (АСП) знака и оперирует разностными стохастическими уравнениями специального вида для диссипативных процессов. Получаемые из модели распределения полисемии и частотно-ранговые распределения языковых знаков статистически значимо (по критерию Колмогорова–Смирнова) не отличаются от эмпирических распределений, полученных из представительных толковых и частотных словарей русского и английского языков.
Ключевые слова: языковой знак, эволюция, ассоциативно-семантический потенциал, значение знака, полисемия, частотно-ранговое распределение, диссипативная стохастическая динамическая модель.
Dissipative Stochastic Dynamic Model of Language Signs Evolution
Computer Research and Modeling, 2011, v. 3, no. 2, pp. 103-124We offer the dissipative stochastic dynamic model of the language sign evolution, satisfying to the principle of the least action, one of fundamental variational principles of the Nature. The model conjectures the Poisson nature of the birth flow of language signs and the exponential distribution of their associative-semantic potential (ASP). The model works with stochastic difference equations of the special type for dissipative processes. The equation for momentary polysemy distribution and frequency-rank distribution drawn from our model do not differs significantly (by Kolmogorov-Smirnov’s test) from empirical distributions, got from main Russian and English explanatory dictionaries as well as frequency dictionaries of them.
-
Вероятностные аспекты метода «компьютерной аналогии» для решения дифференциальных уравнений
Компьютерные исследования и моделирование, 2009, т. 1, № 1, с. 21-31Развивается и обосновывается метод, позволяющий получить явную форму решения в виде отрезков рядов по степеням шага аргумента. Формализуется алгоритм, элементы которого используют аналогию с представлением и обработкой чисел в компьютере: ограничение в разрядной сетке и переброс разрядов. При перебросе разряда выявляются фрактально-стохастические свойства алгоритма, дающие возможность осреднять неизвестные промежуточные шаги в старших разрядах. Строятся решения нелинейных дифференциальных уравнений и системы уравнений.
Probabilistic aspects of “computer analogy” method for solving differential equations
Computer Research and Modeling, 2009, v. 1, no. 1, pp. 21-31Просмотров за год: 3. Цитирований: 1 (РИНЦ).Method which allows to obtain explicit form of the solution as a part of power series of the argument step is developed. Formalization of characteristics of the algorithm analogous to operations of a computer is performed. The operation of transfer from one rank to another leads to a probability scheme of the algorithm that averages unknown intermediate steps in higher ranks of the series. The stochastic characteristics of the method are studied and illustrated. Examples of solving nonlinear equations and systems of nonlinear differential equations are presented.
-
Иерархический метод математического моделирования стохастических тепловых процессов в сложных электронных системах
Компьютерные исследования и моделирование, 2019, т. 11, № 4, с. 613-630В работе развивается иерархический метод математического и компьютерного моделирования интервально-стохастических тепловых процессов в сложных электронных системах различного назначения. Разработанная концепция иерархического структурирования отражает как конструктивную иерархию сложной электронной системы, так и иерархию математических моделей процессов теплообмена. Тепловые процессы, учитывающие разнообразные физические явления в сложных электронных системах, описываются системами стохастических, нестационарных и нелинейных дифференциальных уравнений в частных производных, и в силу этого их компьютерное моделирование наталкивается на значительные вычислительные трудности даже с применением суперкомпьютеров. Иерархический метод позволяет избежать указанных трудностей. Иерархическая структура конструкции электронной системы в общем случае характеризуется пятью уровнями: 1 уровень — активные элементы ЭС (микросхемы, электро-, радиоэлементы); 2 уровень — электронный модуль; 3 уровень — панель, объединяющая множество электронных модулей; 4 уровень — блок панелей; 5 уровень — стойка, установленная в стационарном или подвижном помещении. Иерархия моделей и моделирования стохастических тепловых процессов строится в порядке, обратном иерархической структуре конструкции электронной системы, при этом моделирование интервально-стохастических тепловых процессов осуществляется посредством получения уравнений для статистических мер. Разработанный в статье иерархический метод позволяет учитывать принципиальные особенности тепловых процессов, такие как стохастический характер тепловых, электрических и конструктивных факторов при производстве, сборке и монтаже электронных систем, стохастический разброс условий функционирования и окружающей среды, нелинейные зависимости от температуры факторов теплообмена, нестационарный характер тепловых процессов. Полученные в статье уравнения для статистических мер стохастических тепловых процессов представляют собой систему 14-ти нестационарных нелинейных дифференциальных уравнений первого порядка в обыкновенных производных, решение которых легко реализуется на современных компьютерах существующими численными методами. Рассмотрены результаты применения метода при компьютерном моделировании стохастических тепловых процессов в электронной системе. Иерархический метод применяется на практике при тепловом проектировании реальных электронных систем и создании современных конкурентоспособных устройств.
Ключевые слова: стохастический, тепловой процесс, статистические меры, математическое моделирование, электронные системы.
Hierarchical method for mathematical modeling of stochastic thermal processes in complex electronic systems
Computer Research and Modeling, 2019, v. 11, no. 4, pp. 613-630Просмотров за год: 3.A hierarchical method of mathematical and computer modeling of interval-stochastic thermal processes in complex electronic systems for various purposes is developed. The developed concept of hierarchical structuring reflects both the constructive hierarchy of a complex electronic system and the hierarchy of mathematical models of heat exchange processes. Thermal processes that take into account various physical phenomena in complex electronic systems are described by systems of stochastic, unsteady, and nonlinear partial differential equations and, therefore, their computer simulation encounters considerable computational difficulties even with the use of supercomputers. The hierarchical method avoids these difficulties. The hierarchical structure of the electronic system design, in general, is characterized by five levels: Level 1 — the active elements of the ES (microcircuits, electro-radio-elements); Level 2 — electronic module; Level 3 — a panel that combines a variety of electronic modules; Level 4 — a block of panels; Level 5 — stand installed in a stationary or mobile room. The hierarchy of models and modeling of stochastic thermal processes is constructed in the reverse order of the hierarchical structure of the electronic system design, while the modeling of interval-stochastic thermal processes is carried out by obtaining equations for statistical measures. The hierarchical method developed in the article allows to take into account the principal features of thermal processes, such as the stochastic nature of thermal, electrical and design factors in the production, assembly and installation of electronic systems, stochastic scatter of operating conditions and the environment, non-linear temperature dependencies of heat exchange factors, unsteady nature of thermal processes. The equations obtained in the article for statistical measures of stochastic thermal processes are a system of 14 non-stationary nonlinear differential equations of the first order in ordinary derivatives, whose solution is easily implemented on modern computers by existing numerical methods. The results of applying the method for computer simulation of stochastic thermal processes in electron systems are considered. The hierarchical method is applied in practice for the thermal design of real electronic systems and the creation of modern competitive devices.
-
Анализ стохастических равновесий и индуцированных шумом переходов в нелинейных дискретных системах
Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 559-571В работе рассматриваются дискретные динамические системы, находящиеся под действием случайных возмущений. Динамика отклонений стохастических решений от детерминированных равновесий исследуется с помощью систем первого приближения. Получены необходимые и достаточные условия, при которых уравнения для первых двух моментов этих отклонений имеют устойчивые стационарные решения. Стационарные вторые моменты используются для оценки разброса случайных состояний вокруг устойчивых равновесий нелинейных систем, а также для анализа индуцированных шумом переходов между бассейнами притяжения этих равновесий. Конструктивность предлагаемого подхода демонстрируется на примере анализа различных стохастических режимов для модели популяционной динамики Рикера с эффектом Олли.
Ключевые слова: нелинейные дискретные системы, стохастические возмущения, индуцированные шумом переходы, модель Рикера.
Analysis of stochastically forced equilibria and noise-induced transitions in nonlinear discrete systems
Computer Research and Modeling, 2013, v. 5, no. 4, pp. 559-571Просмотров за год: 1. Цитирований: 2 (РИНЦ).Stochastically forced discrete dynamical systems are considered. Using first approximation systems, we study dynamics of deviations of stochastic solutions from deterministic equilibria. Necessary and sufficient conditions of the existence of stable stationary solutions of equations for mean-square deviations are derived. Stationary values of these mean-square deviations are used for the estimations of the dispersion of random states nearby stable equilibria and analysis of noise-induced transitions. Constructive application of the suggested technique to the analysis of various stochastic regimes in Ricker population model with Allee effect is demonstrated.
-
Рождение и развитие беспорядка внутри упорядоченного состояния в пространственно распределенной модели химической реакции
Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 595-607В работе изложены основные моменты приближения среднего поля в применении к многокомпонентным стохастическим реакционно-диффузионным системам.
Представлена изучаемая модель химической реакции — брюсселятор. Записаны кинетические уравнения реакции, учитывающие диффузию промежуточных компонент и флуктуации концентраций исходных веществ. Флуктуации моделируются как случайные гауссовы однородные и изотропные в пространстве поля, с нулевым средним и пространственной корреляционной функцией, имеющей нетривиальную структуру. В работе рассматриваются значения параметров модели, соответствующие пространственно неоднородному упорядоченному состоянию в детерминированном случае.
В работе получено одноточечное двумерное нелинейное самосогласованное уравнение Фоккера–Планка в интерпретации Стратоновича в приближении среднего поля для пространственно распределенного стохастического брюсселятора, которое описывает динамику плотности распределения вероятностей значений концентраций компонент рассматриваемой системы. Найдены значения интенсивности внешнего шума, соответствующие двум типам решений уравнения Фоккера–Планка: решению с времен- ной бимодальностью и решению с многократным чередованием одно- и бимодального видов плотности вероятностей. Проведено численное исследование динамики плотности распределения вероятностей и изучено поведение во времени дисперсий, математических ожиданий и наиболее вероятных значений концентраций компонент при различных значениях интенсивности шума и бифуркационного параметра в указанных областях параметров задачи.
Показано, что, начиная с некоторого значения интенсивности внешнего шума, внутри упорядоченной фазы зарождается беспорядок, существующий конечное время, причем чем больше шум, тем больше его время жизни. Чем дальше от точки бифуркации, тем меньше шум, который его порождает, и тем уже область значений интенсивности шума, при которых система эволюционирует к упорядоченному, но уже новому статистически стационарному состоянию. При некотором втором значении интенсивности шума возникает перемежаемость упорядоченной и разупорядоченной фаз. Увеличение интенсивности шума приводит к тому, что частота перемежаемости увеличивается.
Таким образом, показано, что сценарием шумоиндуцированного перехода «порядок–беспорядок» в изучаемой системе является перемежаемость упорядоченной и разупорядоченной фаз.
Ключевые слова: приближение среднего поля, системы реакционно-диффузионного типа, нелинейное самосогласованное уравнение Фоккера–Планка, динамические фазовые переходы, беспорядок.
Origin and growth of the disorder within an ordered state of the spatially extended chemical reaction model
Computer Research and Modeling, 2017, v. 9, no. 4, pp. 595-607Просмотров за год: 7.We now review the main points of mean-field approximation (MFA) in its application to multicomponent stochastic reaction-diffusion systems.
We present the chemical reaction model under study — brusselator. We write the kinetic equations of reaction supplementing them with terms that describe the diffusion of the intermediate components and the fluctuations of the concentrations of the initial products. We simulate the fluctuations as random Gaussian homogeneous and spatially isotropic fields with zero means and spatial correlation functions with a non-trivial structure. The model parameter values correspond to a spatially-inhomogeneous ordered state in the deterministic case.
In the MFA we derive single-site two-dimensional nonlinear self-consistent Fokker–Planck equation in the Stratonovich's interpretation for spatially extended stochastic brusselator, which describes the dynamics of probability distribution density of component concentration values of the system under consideration. We find the noise intensity values appropriate to two types of Fokker–Planck equation solutions: solution with transient bimodality and solution with the multiple alternation of unimodal and bimodal types of probability density. We study numerically the probability density dynamics and time behavior of variances, expectations, and most probable values of component concentrations at various noise intensity values and the bifurcation parameter in the specified region of the problem parameters.
Beginning from some value of external noise intensity inside the ordered phase disorder originates existing for a finite time, and the higher the noise level, the longer this disorder “embryo” lives. The farther away from the bifurcation point, the lower the noise that generates it and the narrower the range of noise intensity values at which the system evolves to the ordered, but already a new statistically steady state. At some second noise intensity value the intermittency of the ordered and disordered phases occurs. The increasing noise intensity leads to the fact that the order and disorder alternate increasingly.
Thus, the scenario of the noise induced order–disorder transition in the system under study consists in the intermittency of the ordered and disordered phases.
-
Математическое моделирование интервально стохастических тепловых процессов в технических системах при интервальной неопределенности определяющих параметров
Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 501-520Математическое и компьютерное моделирование тепловых процессов в технических системах, проводимое в настоящее время, основано на допущении, согласно которому все параметры, определяющие тепловые процессы, полностью и однозначно известны и определены, то есть являются детерминированными. Между тем практика показывает, что параметры, определяющие тепловые процессы, носят неопределенный интервально стохастический характер, что, в свою очередь, обусловливает интервально стохастический характер тепловых процессов в технической системе. Это означает, что реальные значения температуры каждого элемента в технической системе будут случайным образом распределены внутри интервалов своего изменения. Поэтому детерминированный подход к моделированию тепловых процессов, при котором получаются конкретные значения температур элементов, не позволяет адекватно рассчитывать температурные распределения в технических системах. Интервально стохастический характер параметров, определяющих тепловые процессы, обусловливается тремя группами факторов: (a) статистическим технологическим разбросом параметров элементов при изготовлении и сборке системы; (b) случайным характером факторов, обусловленных функционированием технической системы (флуктуациями токов, напряжений, мощностями потребления, температурами и скоростями потоков охлаждающей жидкости и среды внутри системы; (c) случайностью параметров окружающей среды (температурой, давлением, скоростью). Интервально стохастическая неопределенность определяющих факторов в технических системах является неустранимой, поэтому пренебрежение ею приводит к ошибкам при проектировании технических систем. В статье развивается метод, позволяющий моделировать нестационарные нелинейные интервально стохастические тепловые процессы в технических и, в частности, электронных системах при интервальной неопределенности определяющих параметров. Метод основан на получении и последующем решении уравнений для нестационарных статистических мер (математических ожиданий, дисперсий, ковариаций) распределений температуры в технической системе при заданных интервалах изменения и статистических мерах определяющих параметров. Рассмотрено применение разработанного метода к моделированию интервально стохастического теплового процесса в конкретной электронной системе.
Ключевые слова: математическое моделирование, тепловой процесс, техническая система, интервальный, стохастический, нелинейный, нестационарный, статистические меры, математическое ожидание, дисперсия, ковариация.
Mathematical modeling of the interval stochastic thermal processes in technical systems at the interval indeterminacy of the determinative parameters
Computer Research and Modeling, 2016, v. 8, no. 3, pp. 501-520Просмотров за год: 15. Цитирований: 6 (РИНЦ).The currently performed mathematical and computer modeling of thermal processes in technical systems is based on an assumption that all the parameters determining thermal processes are fully and unambiguously known and identified (i.e., determined). Meanwhile, experience has shown that parameters determining the thermal processes are of undefined interval-stochastic character, which in turn is responsible for the intervalstochastic nature of thermal processes in the electronic system. This means that the actual temperature values of each element in an technical system will be randomly distributed within their variation intervals. Therefore, the determinative approach to modeling of thermal processes that yields specific values of element temperatures does not allow one to adequately calculate temperature distribution in electronic systems. The interval-stochastic nature of the parameters determining the thermal processes depends on three groups of factors: (a) statistical technological variation of parameters of the elements when manufacturing and assembling the system; (b) the random nature of the factors caused by functioning of an technical system (fluctuations in current and voltage; power, temperatures, and flow rates of the cooling fluid and the medium inside the system); and (c) the randomness of ambient parameters (temperature, pressure, and flow rate). The interval-stochastic indeterminacy of the determinative factors in technical systems is irremediable; neglecting it causes errors when designing electronic systems. A method that allows modeling of unsteady interval-stochastic thermal processes in technical systems (including those upon interval indeterminacy of the determinative parameters) is developed in this paper. The method is based on obtaining and further solving equations for the unsteady statistical measures (mathematical expectations, variances and covariances) of the temperature distribution in an technical system at given variation intervals and the statistical measures of the determinative parameters. Application of the elaborated method to modeling of the interval-stochastic thermal process in a particular electronic system is considered.
-
Устойчивость дна в напорных каналах
Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 1061-1068В работе на основе предложенной ранее русловой модели решена одномерная задача устойчивости песчаного дна напорного канала. Особенностью исследуемой задачи является используемое оригинальное уравнение русловых деформаций, учитывающее влияние физико-механических и гранулометрических характеристик донного материала и неровности донной поверхности при русловом анализе. Еще одной особенностью рассматриваемой задачи является учет влияния не только придонного касательного, но и нормального напряжения при изучении русловой неустойчивости. Из решения задачи устойчивости песчаного дна для напорного канала получена аналитическая зависимость, определяющая длину волны для быстрорастущих донных возмущений. Выполнен анализ полученной аналитической зависимости, показано, что она обобщает ряд известных эмпирических формул: Коулмана, Шуляка и Бэгнольда. Структура полученной аналитической зависимости указывает на существование двух гидродинамических режимов, характеризуемых числом Фруда, при которых рост донных возмущений может сильно или слабо зависеть от числа Фруда. Учитывая природную стохастичность процесса движения донных волн и наличие области определения решения со слабой зависимостью от чисел Фруда, можно сделать вывод о том, что экспериментальное наблюдение за процессом развития движения донных волн в данной области должно приводить к получению данных, имеющих существенную дисперсию, что и происходит в действительности.
Bottom stability in closed conduits
Computer Research and Modeling, 2015, v. 7, no. 5, pp. 1061-1068Просмотров за год: 1. Цитирований: 2 (РИНЦ).In this paper on the basis of the riverbed model proposed earlier the one-dimensional stability problem of closed flow channel with sandy bed is solved. The feature of the investigated problem is used original equation of riverbed deformations, which takes into account the influence of mechanical and granulometric bed material characteristics and the bed slope when riverbed analyzing. Another feature of the discussed problem is the consideration together with shear stress influence normal stress influence when investigating the riverbed instability. The analytical dependence determined the wave length of fast-growing bed perturbations is obtained from the solution of the sandy bed stability problem for closed flow channel. The analysis of the obtained analytical dependence is performed. It is shown that the obtained dependence generalizes the row of well-known empirical formulas: Coleman, Shulyak and Bagnold. The structure of the obtained analytical dependence denotes the existence of two hydrodynamic regimes characterized by the Froude number, at which the bed perturbations growth can strongly or weakly depend on the Froude number. Considering a natural stochasticity of the waves movement process and the presence of a definition domain of the solution with a weak dependence on the Froude numbers it can be concluded that the experimental observation of the of the bed waves movement development should lead to the data acquisition with a significant dispersion and it occurs in reality.
-
Стохастическая формализация газодинамической иерархии
Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 767-779Математические модели газовой динамики и ее вычислительная индустрия, на наш взгляд, далеки от совершенства. Мы посмотрим на эту проблематику с точки зрения ясной вероятностной микромодели газа из твердых сфер, опираясь как на теорию случайных процессов, так и на классическую кинетическую теорию в терминах плотностей функций распределения в фазовом пространстве; а именно, построим сначала систему нелинейных стохастических дифференциальных уравнений (СДУ), а затем обобщенное случайное и неслучайное интегро-дифференциальное уравнение Больцмана с учетом корреляций и флуктуаций. Ключевыми особенностями исходной модели являются случайный характер интенсивности скачкообразной меры и ее зависимость от самого процесса.
Кратко напомним переход ко все более грубым мезо-макроприближениям в соответствии с уменьшением параметра обезразмеривания, числа Кнудсена. Получим стохастические и неслучайные уравнения, сначала в фазовом пространстве (мезомодель в терминах СДУ по винеров- ским мерам и уравнения Колмогорова – Фоккера – Планка), а затем в координатном пространстве (макроуравнения, отличающиеся от системы уравнений Навье – Стокса и систем квазигазодинамики). Главным отличием этого вывода является более точное осреднение по скорости благодаря аналитическому решению стохастических дифференциальных уравнений по винеровской мере, в виде которых представлена промежуточная мезомодель в фазовом пространстве. Такой подход существенно отличается от традиционного, использующего не сам случайный процесс, а его функцию распределения. Акцент ставится на прозрачности допущений при переходе от одного уровня детализации к другому, а не на численных экспериментах, в которых содержатся дополнительные погрешности аппроксимации.
Теоретическая мощь микроскопического представления макроскопических явлений важна и как идейная опора методов частиц, альтернативных разностным и конечно-элементным.
Ключевые слова: уравнение Больцмана, уравнение Колмогорова – Фоккера – Планка, уравнение Навье – Стокса, уравнения стохастической газодинамики и квазигазодинамики, стохастические дифференциальные уравнения по бернуллиевой и винеровской мерам, методы частиц.
Stochastic formalization of the gas dynamic hierarchy
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 767-779Mathematical models of gas dynamics and its computational industry, in our opinion, are far from perfect. We will look at this problem from the point of view of a clear probabilistic micro-model of a gas from hard spheres, relying on both the theory of random processes and the classical kinetic theory in terms of densities of distribution functions in phase space, namely, we will first construct a system of nonlinear stochastic differential equations (SDE), and then a generalized random and nonrandom integro-differential Boltzmann equation taking into account correlations and fluctuations. The key feature of the initial model is the random nature of the intensity of the jump measure and its dependence on the process itself.
Briefly recall the transition to increasingly coarse meso-macro approximations in accordance with a decrease in the dimensionalization parameter, the Knudsen number. We obtain stochastic and non-random equations, first in phase space (meso-model in terms of the Wiener — measure SDE and the Kolmogorov – Fokker – Planck equations), and then — in coordinate space (macro-equations that differ from the Navier – Stokes system of equations and quasi-gas dynamics systems). The main difference of this derivation is a more accurate averaging by velocity due to the analytical solution of stochastic differential equations with respect to the Wiener measure, in the form of which an intermediate meso-model in phase space is presented. This approach differs significantly from the traditional one, which uses not the random process itself, but its distribution function. The emphasis is placed on the transparency of assumptions during the transition from one level of detail to another, and not on numerical experiments, which contain additional approximation errors.
The theoretical power of the microscopic representation of macroscopic phenomena is also important as an ideological support for particle methods alternative to difference and finite element methods.
-
Модель динамической ловушки для описания человеческого контроля в рамках «стимул – реакция»
Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 79-87В статье предлагается новая модель динамической ловушки типа «стимул – реакция», которая имитирует человеческий контроль динамических систем, где ограниченная рациональность человеческого сознания играет существенную роль. Детально рассматривается сценарий, в котором субъект модулирует контролируемую переменную в ответ на определенный стимул. В этом контексте ограниченная рациональность человеческого сознания проявляется в неопределенности восприятия стимула и последующих действий субъекта. Модель предполагает, что когда интенсивность стимула падает ниже (размытого) порога восприятия стимула, субъект приостанавливает управление и поддерживает контролируемую переменную вблизи нуля с точностью, определяемую неопределенностью ее управления. Когда интенсивность стимула превышает неопределенность восприятия и становится доступной человеческому сознания, испытуемый активирует контроль. Тем самым, динамику системы можно представить как чередующуюся последовательность пассивного и активного режимов управления с вероятностными переходами между ними. Более того, ожидается, что эти переходы проявляют гистерезис из-за инерции принятия решений.
В общем случае пассивный и активный режимы базируются на различных механизмах, что является проблемой для создания эффективных алгоритмов их численного моделирования. Предлагаемая модель преодолевает эту проблему за счет введения динамической ловушки типа «стимул – реакция», имеющей сложную структуру. Область динамической ловушки включает две подобласти: область стагнации динамики системы и область гистерезиса. Модель основывается на формализме стохастических дифференциальных уравнений и описывает как вероятностные переходы между пассивным и активным режимами управления, так и внутреннюю динамику этих режимов в рамках единого представления. Предложенная модель воспроизводит ожидаемые свойства этих режимов управления, вероятностные переходы между ними и гистерезис вблизи порога восприятия. Кроме того, в предельном случае модель оказывается способной имитировать человеческий контроль, когда (1) активный режим представляет собой реализацию «разомкнутого» типа для локально запланированных действий и (2) активация контроля возникает только тогда, когда интенсивность стимула существенно возрастает и риск потери контроля системы становится существенным.
Ключевые слова: человеческий контроль, прерывистость, неопределенность, гистерезис, случайные процессы, стохастические дифференциальные уравнения.
Dynamical trap model for stimulus – response dynamics of human control
Computer Research and Modeling, 2024, v. 16, no. 1, pp. 79-87We present a novel model for the dynamical trap of the stimulus – response type that mimics human control over dynamic systems when the bounded capacity of human cognition is a crucial factor. Our focus lies on scenarios where the subject modulates a control variable in response to a certain stimulus. In this context, the bounded capacity of human cognition manifests in the uncertainty of stimulus perception and the subsequent actions of the subject. The model suggests that when the stimulus intensity falls below the (blurred) threshold of stimulus perception, the subject suspends the control and maintains the control variable near zero with accuracy determined by the control uncertainty. As the stimulus intensity grows above the perception uncertainty and becomes accessible to human cognition, the subject activates control. Consequently, the system dynamics can be conceptualized as an alternating sequence of passive and active modes of control with probabilistic transitions between them. Moreover, these transitions are expected to display hysteresis due to decision-making inertia.
Generally, the passive and active modes of human control are governed by different mechanisms, posing challenges in developing efficient algorithms for their description and numerical simulation. The proposed model overcomes this problem by introducing the dynamical trap of the stimulus-response type, which has a complex structure. The dynamical trap region includes two subregions: the stagnation region and the hysteresis region. The model is based on the formalism of stochastic differential equations, capturing both probabilistic transitions between control suspension and activation as well as the internal dynamics of these modes within a unified framework. It reproduces the expected properties in control suspension and activation, probabilistic transitions between them, and hysteresis near the perception threshold. Additionally, in a limiting case, the model demonstrates the capability of mimicking a similar subject’s behavior when (1) the active mode represents an open-loop implementation of locally planned actions and (2) the control activation occurs only when the stimulus intensity grows substantially and the risk of the subject losing the control over the system dynamics becomes essential.
-
Смешанный алгоритм расчета динамики переноса заряда в ДНК на больших временных интервалах
Компьютерные исследования и моделирование, 2010, т. 2, № 1, с. 63-72Перенос заряда в ДНК моделируется с помощью дискретной модели Холстейна «квантовая частица + классическая цепочка сайтов + взаимодействие». Влияние температуры термостата учитывается с помощью случайной силы, действующей на классические сайты (уравнение Ланжевена). Таким образом, динамика распространения заряда вдоль цепочки описывается системой ОДУ со случайной правой частью. Для интегрирования таких систем обычно применяют алгоритмы 1 или 2 порядка. Мы разработали смешанный алгоритм, имеющий 4 порядок точности по быстрым «квантовым» переменным (заметим, что в «квантовой» подсистеме должно соблюдаться условие: «сумма вероятностей нахождения заряда на сайте постоянна по времени») и 2 порядок по медленным «классическим» переменным, на которые действует случайная сила. Алгоритм позволяет считать на бóльших временах, чем стандартные. В качестве примера приведен модельный расчет развала полярона в однородной цепочке под действием температурных флуктуаций.
Ключевые слова: ДНК, модель Холстейна, уравнение Ланжевена, алгоритм интегрирования ОДУ со случайной правой частью.
Mixed algorithm for modeling of charge transfer in DNA on long time intervals
Computer Research and Modeling, 2010, v. 2, no. 1, pp. 63-72Просмотров за год: 2. Цитирований: 2 (РИНЦ).Charge transfer in DNA is simulated by a discrete Holstein model «quantum particle + classical site chain + interaction». Thermostat temperature is taken into account as stochastic force, which acts on classical sites (Langevin equation). Thus dynamics of charge migration along the chain is described by ODE system with stochastic right-hand side. To integrate the system numerically, algorithms of order 1 or 2 are usually applied. We developed «mixed» algorithm having 4th order of accuracy for fast «quantum» variables (note that in quantum subsystem the condition «sum of probabilities of charge being on site is time-constant» must be held), and 2nd order for slow classical variables, which are affecting by stochastic force. The algorithm allows us to calculate trajectories on longer time intervals as compared to standard algorithms. Model calculations of polaron disruption in homogeneous chain caused by temperature fluctuations are given as an example.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"