Текущий выпуск Номер 6, 2020 Том 12
Результаты поиска по 'напорный канал':
Найдено статей: 2
  1. Крат Ю.Г., Потапов И.И.
    Движение влекомых наносов над периодическим дном
    Компьютерные исследования и моделирование, 2018, т. 10, № 1, с. 47-60

    Движение влекомых наносов по дну напорного канала может приводить к потере устойчивости донной поверхности, когда на дне канала возникают донные волны. Исследование процесса развития донных волн связано с возможностью определения характера движения влекомых наносов по дну периодической формы. Несмотря на большое внимание многих исследователей к данной проблеме, вопрос о развитии процесса донных волн остается открытым и в настоящее время. В значительной мере это связано с тем, что при анализе данного процесса многие исследователи используют в своих работах феноменологические формулы движения влекомых наносов. Полученные в таких моделях результаты позволяют лишь качественно оценить процесс развития донных волн. По этой причине представляет интерес проведение анализа развития донных волн с использованием аналитической модели движения влекомых наносов.

    В работе предложена двумерная профильная математическая русловая модель, позволяющая исследовать движение влекомых наносов над периодическим дном. Особенностью математической модели является возможность расчета расхода влекомых наносов по аналитической модели с реологией Кулона–Прандтля, учитывающей влияние уклонов поверхности дна, придонных нормальных и касательных напряжений на процесс движения донного материала. Показано, что при движении донного материла по дну периодической формы диффузионные и напорные расходы влекомых наносов являются разнонаправленными и доминирующими по отношению к транзитному расходу. Изучались влияния параметра перекошенности донной волны на вклад транзитного, диффузионного и напорного расходов в полный расход влекомых наносов. Выполнено сравнение полученных результатов с численными решениями других авторов для донной поверхности косинусоидальной формы.

    Просмотров за год: 9.
  2. Крат Ю.Г., Потапов И.И.
    Устойчивость дна в напорных каналах
    Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 1061-1068

    В работе на основе предложенной ранее русловой модели решена одномерная задача устойчивости песчаного дна напорного канала. Особенностью исследуемой задачи является используемое оригинальное уравнение русловых деформаций, учитывающее влияние физико-механических и гранулометрических характеристик донного материала и неровности донной поверхности при русловом анализе. Еще одной особенностью рассматриваемой задачи является учет влияния не только придонного касательного, но и нормального напряжения при изучении русловой неустойчивости. Из решения задачи устойчивости песчаного дна для напорного канала получена аналитическая зависимость, определяющая длину волны для быстрорастущих донных возмущений. Выполнен анализ полученной аналитической зависимости, показано, что она обобщает ряд известных эмпирических формул: Коулмана, Шуляка и Бэгнольда. Структура полученной аналитической зависимости указывает на существование двух гидродинамических режимов, характеризуемых числом Фруда, при которых рост донных возмущений может сильно или слабо зависеть от числа Фруда. Учитывая природную стохастичность процесса движения донных волн и наличие области определения решения со слабой зависимостью от чисел Фруда, можно сделать вывод о том, что экспериментальное наблюдение за процессом развития движения донных волн в данной области должно приводить к получению данных, имеющих существенную дисперсию, что и происходит в действительности.

    Просмотров за год: 1. Цитирований: 2 (РИНЦ).

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал входит в Перечень российских рецензируемых научных журналов, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученых степеней доктора и кандидата наук ВАК, группы специальностей: 01.01.00, 01.02.00.
 

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал индексируется в Scopus