Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
The 3rd BRICS Mathematics Conference
Компьютерные исследования и моделирование, 2019, т. 11, № 6, с. 1015-1016The 3rd BRICS Mathematics Conference
Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1015-1016 -
О размерности подобия рандомизированной системы итеративных функций
Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 681-691В работе рассматриваются свойства рандомизированной системы итеративных функций (РСИФ), полученной в результате обобщения известного алгоритма «игра в хаос». Для моделирования РСИФ была использована свободная система статистического анализа и визуализации данных R. Показано, что для полигональных протофрактальных множеств Z = {zj}, j = 1, 2, . . . , k зависимость размерности подобия от параметров РСИФ dS(μ|k) носит немонотонный характер с экстремальным значением max dS(μ|k)=− ln k/ln(1/(1+μ)).
Ключевые слова: размерность подобия, рандомизированная система итеративных функций, многоугольник Серпинского.
The similarity dimension of the random iterated function system
Computer Research and Modeling, 2012, v. 4, no. 4, pp. 681-691Просмотров за год: 1. Цитирований: 2 (РИНЦ).In this paper we consider the properties of the random iterated function systems (RIFS) obtained using a generalization of the Chaos game algorithm. Used for the RIFS simulation R is a free software environment for statistical computing and graphics. The similarity dimension by the polygonal protofractals Z = {zj}, j = 1, 2, . . . , k nonmonotonically depends on the RIFS parameters dS(μ|k) with an extreme value max dS(μ|k)=−ln k/ln(1/(1+μ)).
-
Условия применимости статистической модели Райса и расчет параметров райсовского сигнала методом максимума правдоподобия
Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 13-25В работе развивается теория нового, так называемого двухпараметрического подхода к анализу и обработке случайных сигналов. Проведены математическое моделирование и сопоставление результатов решения задачи в условиях статистических моделей Гаусса и Райса. Дается обоснование применимости статистической модели Райса в условиях анализа огибающей измеряемого сигнала в задачах обработки данных и изображений. Развит и теоретически обоснован метод решения задачи шумоподавления и восстановления райсовского сигнала посредством одновременного вычисления двух статистических параметров — величины математического ожидания исходного сигнала и дисперсии шума — на основе принципа максимума правдоподобия. Проанализированы особенности функции правдоподобия для распределения Райса и вытекающие из них возможности оценки параметров сигнала и шума.
Ключевые слова: случайный сигнал, распределение Райса, распределение Гаусса, метод максимума правдоподобия, отношение сигнала к шуму.
Conditions of Rice statistical model applicability and estimation of the Rician signal’s parameters by maximum likelihood technique
Computer Research and Modeling, 2014, v. 6, no. 1, pp. 13-25Просмотров за год: 2. Цитирований: 4 (РИНЦ).The paper develops a theory of a new so-called two-parametric approach to the random signals' analysis and processing. A mathematical simulation and the task solutions’ comparison have been implemented for the Gauss and Rice statistical models. The applicability of the Rice statistical model is substantiated for the tasks of data and images processing when the signal’s envelope is being analyzed. A technique is developed and theoretically substantiated for solving the task of the noise suppression and initial image reconstruction by means of joint calculation of both statistical parameters — an initial signal’s mean value and noise dispersion — based on the maximum likelihood method within the Rice distribution. The peculiarities of this distribution’s likelihood function and the following from them possibilities of the signal and noise estimation have been analyzed.
-
Статистический анализ блочно-поворотного механизма Марголуса в клеточно-автоматной модели диффузии в среде с дискретными особенностями
Компьютерные исследования и моделирование, 2015, т. 7, № 6, с. 1155-1175Предложено обобщение блочного клеточного автомата Марголуса на гексагональную сетку. Проведена статистическая обработка результатов вероятностных клеточно-автоматных вычислений для ряда модификаций схемы, решающей тестовую задачу диффузии вещества. Показано, что выбор блоков в виде гексагонов на 25% эффективнее, чем в виде Y-блоков. Показано, что алгоритмы имеют полиномиальную сложность, причем степень полинома для параллельных вычислителей лежит в пределах 0.6÷0.8, а для последовательных — в пределах 1.5÷1.7. Исследовалось влияние внедренных в поле клеточного автомата дефектных ячеек на скорость сходимости.
Ключевые слова: диффузия, метод моделирования, дискретные особенности, блочные клеточные автоматы, окрестность Марголуса, гексагональная сетка.
Statistical analysis of Margolus’s block-rotating mechanism cellular automation modeling the diffusion in a medium with discrete singularities
Computer Research and Modeling, 2015, v. 7, no. 6, pp. 1155-1175Просмотров за год: 8. Цитирований: 4 (РИНЦ).The generalization of Margolus’s block cellular automaton on a hexagonal grid is formulated. Statistical analysis of the results of probabilistic cellular automation for vast variety of this scheme solving the test task of diffusion is done. It is shown that the choice of the hexagon blocks is 25% more efficient than Y-blocks. It is shown that the algorithms have polynomial complexity, and the polynom degree lies within 0.6÷0.8 for parallel computer, and in the range 1.5÷1.7 for serial computer. The effects of embedded into automaton’s field defective cells on the rate of convergence are studied also.
-
О некоторых стохастических методах зеркального спуска для условных задач онлайн-оптимизации
Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 205-217Задача выпуклой онлайн-оптимизации естественно возникают в случаях, когда имеет место обновления статистической информации. Для задач негладкой оптимизации хорошо известен метод зеркального спуска. Зеркальный спуск — это расширение субградиентного метода для решения негладких выпуклых задач оптимизации на случай неевкидова расстояния. Работа посвящена стохастическим аналогам недавно предложенных методов зеркального спуска для задач выпуклой онлайн-оптимизации с выпуклыми липшицевыми (вообще говоря, негладкими) функциональными ограничениями. Это означает, что вместо (суб)градиента целевого функционала и функционального ограничения мы используем их стохастические (суб)градиенты. Точнее говоря, допустим, что на замкнутом подмножестве $n$-мерного векторного пространства задано $N$ выпуклых липшицевых негладких функционалов. Рассматривается задача минимизации среднего арифметического этих функционалов с выпуклым липшицевым ограничением. Предложены два метода для решения этой задачи с использованием стохастических (суб)градиентов: адаптивный (не требует знания констант Липшица ни для целевого функционала, ни для ограничения), а также неадаптивный (требует знания константы Липшица для целевого функционала и ограничения). Отметим, что разрешено вычислять стохастический (суб)градиент каждого целевого функционала только один раз. В случае неотрицательного регрета мы находим, что количество непродуктивных шагов равно $O$($N$), что указывает на оптимальность предложенных методов. Мы рассматриваем произвольную прокс-структуру, что существенно для задач принятия решений. Приведены результаты численных экспериментов, позволяющие сравнить работу адаптивного и неадаптивного методов для некоторых примеров. Показано, что адаптивный метод может позволить существенно улучшить количество найденного решения.
Ключевые слова: задача выпуклой онлайн-оптимизации, негладкая задача условной оптимизации, адаптивный зеркальный спуск, липшицев функционал, стохастический (суб)градиент.
On some stochastic mirror descent methods for constrained online optimization problems
Computer Research and Modeling, 2019, v. 11, no. 2, pp. 205-217Просмотров за год: 42.The problem of online convex optimization naturally occurs in cases when there is an update of statistical information. The mirror descent method is well known for non-smooth optimization problems. Mirror descent is an extension of the subgradient method for solving non-smooth convex optimization problems in the case of a non-Euclidean distance. This paper is devoted to a stochastic variant of recently proposed Mirror Descent methods for convex online optimization problems with convex Lipschitz (generally, non-smooth) functional constraints. This means that we can still use the value of the functional constraint, but instead of (sub)gradient of the objective functional and the functional constraint, we use their stochastic (sub)gradients. More precisely, assume that on a closed subset of $n$-dimensional vector space, $N$ convex Lipschitz non-smooth functionals are given. The problem is to minimize the arithmetic mean of these functionals with a convex Lipschitz constraint. Two methods are proposed, for solving this problem, using stochastic (sub)gradients: adaptive method (does not require knowledge of Lipschitz constant neither for the objective functional, nor for the functional of constraint) and non-adaptivemethod (requires knowledge of Lipschitz constant for the objective functional and the functional of constraint). Note that it is allowed to calculate the stochastic (sub)gradient of each functional only once. In the case of non-negative regret, we find that the number of non-productive steps is $O$($N$), which indicates the optimality of the proposed methods. We consider an arbitrary proximal structure, which is essential for decisionmaking problems. The results of numerical experiments are presented, allowing to compare the work of adaptive and non-adaptive methods for some examples. It is shown that the adaptive method can significantly improve the number of the found solutions.
-
Свойство устойчивости статистического распределения Райса: теория и применение в задачах измерения фазового сдвига сигналов
Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 475-485В работе рассматриваются особенности статистического распределения Райса, обусловливающие возможность его эффективного применения при решении задач высокоточных фазовых измерений в оптике. Дается строгое математическое доказательство свойства устойчивости статистического распределения Райса на примере рассмотрения разностного сигнала, а именно: доказано, что сумма или разность двух райсовских сигналов также подчиняются распределению Райса. Кроме того, получены формулы для параметров райсовского распределения результирующего суммарного или разностного сигнала. На основании доказанного свойства устойчивости распределения Райса в работе разработан новый оригинальный метод высокоточного измерения разности фаз двух квазигармонических сигналов. Этот метод базируется на статистическом анализе измеренных выборочных данных для обоих амплитуд сигналов и амплитуды третьего сигнала, представляющего собой разность сопоставляемых по фазе сигналов. Искомый фазовый сдвиг двух квазигармонических сигналов определяется исходя из геометрических соображений как угол треугольника, сформированного восстановленными на фоне шума значениями амплитуд трех упомянутых сигналов. Тем самым предлагаемый метод измерения фазового сдвига с использованием разностного сигнала основан исключительно на амплитудных измерениях, что существенно снижает требования к оборудованию и облегчает реализацию метода на практике. В работе представлены как строгое математическое обоснование нового метода измерения разности фаз сигналов, так и результаты его численного тестирования. Разработанный метод высокоточных фазовых измерений может эффективно применяться для решения широкого круга задач в различных областях науки и техники, в частности в дальнометрии, в системах коммуникации, навигации и т. п.
Ключевые слова: распределение Райса, плотность вероятности, свойство устойчивости, обработка стохастических данных, квазигармонический сигнал, фазовый сдвиг, фазовые измерения.
Stable character of the Rice statistical distribution: the theory and application in the tasks of the signals’ phase shift measuring
Computer Research and Modeling, 2020, v. 12, no. 3, pp. 475-485The paper concerns the study of the Rice statistical distribution’s peculiarities which cause the possibility of its efficient application in solving the tasks of high precision phase measuring in optics. The strict mathematical proof of the Rician distribution’s stable character is provided in the example of the differential signal consideration, namely: it has been proved that the sum or the difference of two Rician signals also obey the Rice distribution. Besides, the formulas have been obtained for the parameters of the resulting summand or differential signal’s Rice distribution. Based upon the proved stable character of the Rice distribution a new original technique of the high precision measuring of the two quasi-harmonic signals’ phase shift has been elaborated in the paper. This technique is grounded in the statistical analysis of the measured sampled data for the amplitudes of the both signals and for the amplitude of the third signal which is equal to the difference of the two signals to be compared in phase. The sought-for phase shift of two quasi-harmonic signals is being calculated from the geometrical considerations as an angle of a triangle which sides are equal to the three indicated signals’ amplitude values having been reconstructed against the noise background. Thereby, the proposed technique of measuring the phase shift using the differential signal analysis, is based upon the amplitude measurements only, what significantly decreases the demands to the equipment and simplifies the technique implementation in practice. The paper provides both the strict mathematical substantiation of a new phase shift measuring technique and the results of its numerical testing. The elaborated method of high precision phase measurements may be efficiently applied for solving a wide circle of tasks in various areas of science and technology, in particular — at distance measuring, in communication systems, in navigation, etc.
-
О применении асимптотических критериев для определения числа компонент смеси вероятностных распределений
Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 45-53В статье демонстрируется практическая эффективность применения асимптотически наиболее мощных критериев проверки гипотез о числе компонент смеси в моделях добавления и расщепления компонент. Тестовые данные представляют собой выборки из различных конечных смесей нормальных законов. Проводится сравнение результатов для разнообразных уровней значимости и весов.
On application of the asymptotic tests for estimating the number of mixture distribution components
Computer Research and Modeling, 2012, v. 4, no. 1, pp. 45-53Просмотров за год: 1. Цитирований: 2 (РИНЦ).The paper demonstrates the efficiency of asymptotically most powerful test of statistical hypotheses about the number of mixture components in the adding and splitting component models. Test data are the samples from different finite normal mixtures. The results are compared for various significance levels and weights.
-
Теоретическое обоснование математических методов совместного оценивания параметров сигнала и шума при анализе райсовских данных
Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 445-473В работе решается двухпараметрическая задача совместного расчета параметров сигнала и шума в условиях распределения Райса методами математической статистики: методом максимума правдоподобия и вариантами метода моментов. Рассматриваемые варианты метода моментов включают в себя совместный расчет сигнала и шума на основе измерений 2-го и 4-го моментов (ММ24) и на основе измерений 1-го и 2-го моментов (ММ12). В рамках каждого из рассматриваемых методов получены в явном виде системы уравнений для искомых параметров сигнала и шума. Важный математический результат проведенного исследования состоит в том, что решение системы двух нелинейных уравнений с двумя неизвестными — искомыми параметрами сигнала и шума — сведено к решению одного уравнения с одной неизвестной, что важно с точки зрения как теоретического исследования метода, так и его практического применения, позволяя существенно сократить необходимые для реализации метода вычислительные ресурсы. Задача является значимой для целей обработки райсовских данных, в частности, в системах магнитно-резонансной визуализации. В результате проведенного теоретического анализа получен важный практический вывод: решение двухпараметрической задачи не приводит к увеличению требуемых вычислительных ресурсов по сравнению с однопараметрическим приближением. Теоретические выводы подтверждаются результатами численного эксперимента.
Ключевые слова: функция плотности вероятности, распределение Райса, функция правдоподобия, метод максимума правдоподобия, метод моментов, отношение сигнала к шуму, дисперсия шума.
Theoretical substantiation of the mathematical techniques for joint signal and noise estimation at rician data analysis
Computer Research and Modeling, 2016, v. 8, no. 3, pp. 445-473Просмотров за год: 2. Цитирований: 2 (РИНЦ).The paper provides a solution of the two-parameter task of joint signal and noise estimation at data analysis within the conditions of the Rice distribution by the techniques of mathematical statistics: the maximum likelihood method and the variants of the method of moments. The considered variants of the method of moments include the following techniques: the joint signal and noise estimation on the basis of measuring the 2-nd and the 4-th moments (MM24) and on the basis of measuring the 1-st and the 2-nd moments (MM12). For each of the elaborated methods the explicit equations’ systems have been obtained for required parameters of the signal and noise. An important mathematical result of the investigation consists in the fact that the solution of the system of two nonlinear equations with two variables — the sought for signal and noise parameters — has been reduced to the solution of just one equation with one unknown quantity what is important from the view point of both the theoretical investigation of the proposed technique and its practical application, providing the possibility of essential decreasing the calculating resources required for the technique’s realization. The implemented theoretical analysis has resulted in an important practical conclusion: solving the two-parameter task does not lead to the increase of required numerical resources if compared with the one-parameter approximation. The task is meaningful for the purposes of the rician data processing, in particular — the image processing in the systems of magnetic-resonance visualization. The theoretical conclusions have been confirmed by the results of the numerical experiment.
-
Моделирование полета и разрушения болида Бенешов
Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 605-618Астероидно-кометная опасность в течение последних десятилетий признана научными и правительственными кругами всех стран мира одной из самых существенных угроз развития и даже существования нашей цивилизации. Одним из аспектов деятельности по предотвращению этой опасности является изучение вторжения достаточно крупных метеорных тел в атмосферу и их движения в ней, сопровождаемых большим числом физическо-химических явлений. Особый интерес вызывает падение метеорных тел, для которых прослежены их траекторные и прочие характеристики, и найдены сами выпавшие метеориты или их фрагменты. В настоящей работе изучено падение именно такого тела. На основе комплексной физико-математической модели, определяющей движение и разрушение космических тел естественного происхождения в атмосфере Земли, рассмотрены движение и фрагментация очень яркого болида Бенешов (Benešov, EN070591), который был зарегистрирован в Чехии Европейской наблюдательной системой в 1991 г. Для этого болида были получены уникальные наблюдательные данные, включая спектры излучения. В настоящей работе проведено моделирование аэробаллистики метеороида Бенешов и его фрагментов с учетом их сложного характера разрушения под воздействием тепловых и силовых факторов. Скорость метеорного тела, унос массы под действием тепловых потоков определяются из решения системы уравнений классической физической теории метеоров. При этом учитывается переменность параметра уноса массы по траектории. Процесс фрагментации метеороида рассматривается в рамках модели последовательного дробления на основе статистической теории прочности, с учетом влияния масштабного фактора на предел прочности объекта. Проведены расчеты совместного обтекания системы тел (осколков метеорита) при проявлении эффекта интерференции. Для расчета обтекания конгломерата осколков метеороида разработан метод моделирования на системе сеток, который позволяет рассматривать фрагменты различных форм, размеров и масс, а также допускает достаточно произвольное их относительное положение в потоке. Из-за неточностей в расчете траектории ученые 23 года не могли найти осколки этого болида. Благодаря современным методикам и более точным расчетам ученые выявили место падения, которое оказалось существенно удаленным от ожидаемого. После этого были обнаружены четыре небольших обломка метеорита. Проведенные расчеты движения и разрушения болида Бенешов показывают, что на процессы его взаимодействия с атмосферой влияет множество факторов: массовые и прочностные характеристики болида, параметры движения, механизмы разрушения, процессы взаимодействия фрагментов, включая эффекты интерференции, и др.
Ключевые слова: болид, моделирование, движение, фрагментация, тепловой поток, прочность, процессы взаимодействия.
Simulation of flight and destruction of the Benešov bolid
Computer Research and Modeling, 2018, v. 10, no. 5, pp. 605-618Просмотров за год: 24. Цитирований: 1 (РИНЦ).Comets and asteroids are recognized by the scientists and the governments of all countries in the world to be one of the most significant threats to the development and even the existence of our civilization. Preventing this threat includes studying the motion of large meteors through the atmosphere that is accompanied by various physical and chemical phenomena. Of particular interest to such studies are the meteors whose trajectories have been recorded and whose fragments have been found on Earth. Here, we study one of such cases. We develop a model for the motion and destruction of natural bodies in the Earth’s atmosphere, focusing on the Benešov bolid (EN070591), a bright meteor registered in 1991 in the Czech Republic by the European Observation System. Unique data, that includes the radiation spectra, is available for this bolid. We simulate the aeroballistics of the Benešov meteoroid and of its fragments, taking into account destruction due to thermal and mechanical processes. We compute the velocity of the meteoroid and its mass ablation using the equations of the classical theory of meteor motion, taking into account the variability of the mass ablation along the trajectory. The fragmentation of the meteoroid is considered using the model of sequential splitting and the statistical stress theory, that takes into account the dependency of the mechanical strength on the length scale. We compute air flows around a system of bodies (shards of the meteoroid) in the regime where mutual interplay between them is essential. To that end, we develop a method of simulating air flows based on a set of grids that allows us to consider fragments of various shapes, sizes, and masses, as well as arbitrary positions of the fragments relative to each other. Due to inaccuracies in the early simulations of the motion of this bolid, its fragments could not be located for about 23 years. Later and more accurate simulations have allowed researchers to locate four of its fragments rather far from the location expected earlier. Our simulations of the motion and destruction of the Benešov bolid show that its interaction with the atmosphere is affected by multiple factors, such as the mass and the mechanical strength of the bolid, the parameters of its motion, the mechanisms of destruction, and the interplay between its fragments.
-
Статистическое распределение фазы квазигармонического сигнала: основы теории и компьютерное моделирование
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 287-297В работе представлены результаты фундаментального исследования, направленного на теоретическое изучение и компьютерное моделирование свойств статистического распределения фазы квазигармонического сигнала, формируемого в результате воздействия гауссовского шума на исходно гармонический сигнал. Методами математического анализа получены в явном виде формулы для основных характеристик данного распределения — функции распределения, функции плотности вероятности, функции правдоподобия. В результате проведенного компьютерного моделирования проанализированы зависимости данных функций от параметров распределения фазы. В работе разработаны и обоснованы методы оценивания параметров распределения фазы, несущих информацию об исходном, не искаженном шумом сигнале. Показано, что задача оценивания исходного значения фазы квазигармонического сигнала может эффективно решаться простым усреднением результатов выборочных измерений фазы, в то время как для решения задачи оценивания второго параметра распределения фазы — параметра уровня сигнала относительно шума — предлагается использовать метод максимума правдоподобия. В работе представлены графические материалы, полученные путем компьютерного моделирования основных характеристик исследуемого статистического распределения фазы. Существование и единственность максимума функции правдоподобия позволяют обосновать возможность и эффективность решения задачи оценивания уровня сигнала относительно уровня шума методом максимума правдоподобия. Развиваемый в работе метод оценивания уровня незашумленного сигнала относительно уровня шума, т.е. параметра, характеризующего интенсивность сигнала, на основании измерений фазы сигнала является оригинальным, принципиально новым, открывающим перспективы использования фазовых измерений как инструмента анализа стохастических данных. Данное исследование является значимым для решения задач расчета фазы и уровня сигнала методами статистической обработки выборочных фазовых измерений. Предлагаемые методы оценивания параметров распределения фазы квазигармонического сигнала могут использоваться при решении различных научных и прикладных задач, в частности, в таких областях, как радиофизика, оптика, радиолокация, радионавигация, метрология.
Ключевые слова: квазигармонический сигнал, гауссовский шум, отношение сигнала к шуму, функция распределения, функция плотности вероятности, функция правдоподобия, интеграл ошибок.
Statistical distribution of the quasi-harmonic signal’s phase: basics of theory and computer simulation
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 287-297The paper presents the results of the fundamental research directed on the theoretical study and computer simulation of peculiarities of the quasi-harmonic signal’s phase statistical distribution. The quasi-harmonic signal is known to be formed as a result of the Gaussian noise impact on the initially harmonic signal. By means of the mathematical analysis the formulas have been obtained in explicit form for the principle characteristics of this distribution, namely: for the cumulative distribution function, the probability density function, the likelihood function. As a result of the conducted computer simulation the dependencies of these functions on the phase distribution parameters have been analyzed. The paper elaborates the methods of estimating the phase distribution parameters which contain the information about the initial, undistorted signal. It has been substantiated that the task of estimating the initial value of the phase of quasi-harmonic signal can be efficiently solved by averaging the results of the sampled measurements. As for solving the task of estimating the second parameter of the phase distribution, namely — the parameter, determining the signal level respectively the noise level — a maximum likelihood technique is proposed to be applied. The graphical illustrations are presented that have been obtained by means of the computer simulation of the principle characteristics of the phase distribution under the study. The existence and uniqueness of the likelihood function’s maximum allow substantiating the possibility and the efficiency of solving the task of estimating signal’s level relative to noise level by means of the maximum likelihood technique. The elaborated method of estimating the un-noised signal’s level relative to noise, i. e. the parameter characterizing the signal’s intensity on the basis of measurements of the signal’s phase is an original and principally new technique which opens perspectives of usage of the phase measurements as a tool of the stochastic data analysis. The presented investigation is meaningful for solving the task of determining the phase and the signal’s level by means of the statistical processing of the sampled phase measurements. The proposed methods of the estimation of the phase distribution’s parameters can be used at solving various scientific and technological tasks, in particular, in such areas as radio-physics, optics, radiolocation, radio-navigation, metrology.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"