Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'selection of signal':
Найдено статей: 10
  1. Чуканов С.Н.
    Моделирование структуры сложной системы на основе оценивания меры взаимодействия подсистем
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 707-719

    В работе рассматривается использование определения меры взаимодействия между каналами при выборе конфигурации структуры системы управления сложными динамическими объектами. Приведены основные методы определения меры взаимодействия подсистем сложных систем управления на основе методов RGA (Relative Gain Array), Dynamic RGA, HIIA (Hankel Interaction Index Array), PM (Participation matrix). Задача проектирования структуры управления традиционно делится на выбор каналов ввода-вывода и выбор конфигурации управления. При выборе конфигурации управления простые конфигурации более предпочтительны, так как просты при проектировании, обслуживании и более устойчивы к сбоям в работе. Однако сложные конфигурации обеспечивают создание системы управления с более высокой эффективностью. Процессы в больших динамических объектах характеризуются высокой степенью взаимодействия между переменными процесса. Выбор структуры управления заключается в определении того, какие динамические соединения следует использовать для разработки системы управления. Когда структура выбрана, соединения могут быть использованы для конфигурирования системы управления. Для больших систем предлагается для выбора структуры управления предварительно группировать компоненты векторов входных и выходных сигналов исполнительных органов и чувствительных элементов в наборы, в которых количество переменных существенно уменьшается. Приводится количественная оценка децентрализации системы управления на основе минимизации суммы недиагональных элементов матрицы PM. Приведен пример оценки меры взаимодействия компонент сильно связанных подсистем и меры взаимодействия компонент слабосвязанных подсистем. Дана количественная оценка последствий пренебрежения взаимодействием компонент слабосвязанных подсистем. Рассмотрено построение взвешенного графа для визуализации взаимодействия подсистем сложной системы. В работе предложен метод формирования грамиана управляемости вектором выходных сигналов, инвариантный к преобразованиям вектора состояния. Приведен пример декомпозиции системы стабилизации компонент вектора угловой скорости летательного аппарата. Оценивание мер взаимного влияния процессов в каналах систем управления позволяет повысить надежность функционирования систем при учете использования аналитической избыточности информации с различных приборов, что позволяет снизить массовые и габаритные характеристики систем, а также потребление энергии. Методы оценивания меры взаимодействия процессов в подсистемах систем управления могут быть использованы при проектировании сложных систем, например систем управления движением, систем ориентации и стабилизации летательных аппаратов.

    Chukanov S.N.
    Modeling the structure of a complex system based on estimation of the measure of interaction of subsystems
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 707-719

    The using of determining the measure of interaction between channels when choosing the configuration structure of a control system for complex dynamic objects is considered in the work. The main methods for determining the measure of interaction between subsystems of complex control systems based on the methods RGA (Relative Gain Array), Dynamic RGA, HIIA (Hankel Interaction Index Array), PM (Participation matrix) are presented. When choosing a control configuration, simple configurations are preferable, as they are simple in design, maintenance and more resistant to failures. However, complex configurations provide higher performance control systems. Processes in large dynamic objects are characterized by a high degree of interaction between process variables. For the design of the control structure interaction measures are used, namely, the selection of the control structure and the decision on the configuration of the controller. The choice of control structure is to determine which dynamic connections should be used to design the controller. When a structure is selected, connections can be used to configure the controller. For large systems, it is proposed to pre-group the components of the vectors of input and output signals of the actuators and sensitive elements into sets in which the number of variables decreases significantly in order to select a control structure. A quantitative estimation of the decentralization of the control system based on minimizing the sum of the off-diagonal elements of the PM matrix is given. An example of estimation the measure of interaction between components of strong coupled subsystems and the measure of interaction between components of weak coupled subsystems is given. A quantitative estimation is given of neglecting the interaction of components of weak coupled subsystems. The construction of a weighted graph for visualizing the interaction of the subsystems of a complex system is considered. A method for the formation of the controllability gramian on the vector of output signals that is invariant to state vector transformations is proposed in the paper. An example of the decomposition of the stabilization system of the components of the flying vehicle angular velocity vector is given. The estimation of measures of the mutual influence of processes in the channels of control systems makes it possible to increase the reliability of the systems when accounting for the use of analytical redundancy of information from various devices, which reduces the mass and energy consumption. Methods for assessing measures of the interaction of processes in subsystems of control systems can be used in the design of complex systems, for example, motion control systems, orientation and stabilization systems of vehicles.

  2. Работа посвящена проблеме создания модели со стационарными параметрами по ретроспективным данным в условиях неизвестных возмущений. Рассматривается случай, когда представительная выборка состояний объекта может быть сформирована с использованием ретроспективных данных, накопленных только в течение значительного интервала времени. При этом допускается, что неизвестные возмущения могут действовать в широком частотном диапазоне и могут иметь низкочастотные и трендовые составляющие. В такой ситуации включение в выборку данных разных временных периодов может привести к противоречиям и чрезвычайно снизить точность модели. В работе дан обзор подходов и способов согласования данных. При этом основное внимание уделено отбору данных. Дана оценка применимости различных вариантов отбора данных как инструмента снижения уровня неопределенности. Предложен метод идентификации модели объекта с самовыравниванием по данным, накопленным за значительный период времени в условиях неизвестных возмущений с широким частотным диапазоном. Метод ориентирован на создание модели со стационарными параметрами, не требующей периодической перенастройки под новые условия. Метод основан на совместном применении отбора данных и представлении данных отдельных периодов времени в виде приращений относительно начального для периода момента времени. Это позволяет уменьшить число параметров, которые характеризуют неизвестные возмущения при минимуме допущений, ограничивающих применение метода. В результате снижается размерность поисковой задачи и минимизируются вычислительные затраты, связанные с настройкой модели. Рассмотрены особенности применения метода при нелинейной модели. Метод использован при разработке модели закрытого охлаждения стали на агрегате непрерывного горячего оцинковании стальной полосы. Модель может использоваться при упреждающем управлении тепловыми процессами и при выборе скорости движения полосы. Показано, что метод делает возможным разработку модели тепловых процессов с секции закрытого охлаждения в условиях неизвестных возмущений, имеющих в том числе низкочастотные составляющие.

    The work is devoted to the problem of creating a model with stationary parameters using historical data under conditions of unknown disturbances. The case is considered when a representative sample of object states can be formed using historical data accumulated only over a significant period of time. It is assumed that unknown disturbances can act in a wide frequency range and may have low-frequency and trend components. In such a situation, including data from different time periods in the sample can lead to inconsistencies and greatly reduce the accuracy of the model. The paper provides an overview of approaches and methods for data harmonization. In this case, the main attention is paid to data sampling. An assessment is made of the applicability of various data sampling options as a tool for reducing the level of uncertainty. We propose a method for identifying a self-leveling object model using data accumulated over a significant period of time under conditions of unknown disturbances with a wide frequency range. The method is focused on creating a model with stationary parameters that does not require periodic reconfiguration to new conditions. The method is based on the combined use of sampling and presentation of data from individual periods of time in the form of increments relative to the initial point in time for the period. This makes it possible to reduce the number of parameters that characterize unknown disturbances with a minimum of assumptions that limit the application of the method. As a result, the dimensionality of the search problem is reduced and the computational costs associated with setting up the model are minimized. It is possible to configure both linear and, in some cases, nonlinear models. The method was used to develop a model of closed cooling of steel on a unit for continuous hot-dip galvanizing of steel strip. The model can be used for predictive control of thermal processes and for selecting strip speed. It is shown that the method makes it possible to develop a model of thermal processes from a closed cooling section under conditions of unknown disturbances, including low-frequency components.

  3. Ветчанин Е.В., Тененев В.А., Килин А.А.
    Оптимальное управление движением в идеальной жидкости тела c винтовой симметрией с внутренними роторами
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 741-759

    В данной работе рассматривается управляемое движение в идеальной жидкости винтового тела с тремя лопастями за счет вращения трех внутренних роторов. Ставится задача выбора управляющих воздействий, обеспечивающих движение тела вблизи заданной траектории. Для определения управлений, гарантирующих движение вблизи заданной кривой, предложены методы, основанные на применении гибридных генетических алгоритмов (генетические алгоритмы с вещественным кодированием с дополнительным обучением лидера популяции каким-либо градиентным методом) и искусственных нейронных сетей. Корректность работы предложенных численных методов оценивается с помощью полученных ранее дифференциальных уравнений, определяющих закон изменения управляющих воздействий для заданной траектории.

    В подходе на основе гибридных генетических алгоритмов исходная задача минимизации интегрального функционала сводится к минимизации функции многих переменных. Заданный временной интервал разбивается на малые элементы, на каждом из которых управляющие воздействия аппроксимируются полиномами Лагранжа 2 и 3 порядков. Гибридные генетические алгоритмы при соответствующих настройках воспроизводят решение, близкое точному. Однако стоимость расчета 1 секунды физического процесса составляет порядка 300 секунд процессорного времени.

    Для повышения быстродействия расчета управляющих воздействий предложен алгоритм на основе искусственных нейронных сетей. В качестве входного сигнала нейронная сеть принимает компоненты требуемого вектора перемещения. В качестве выходного сигнала возвращаются узловые значения полиномов Лагранжа, приближенно описывающих управляющие воздействия. Нейронная сеть обучается хорошо известным методом обратного распространения ошибки. Обучающая выборка генерируется с помощью подхода на основе гибридных генетических алгоритмов. Расчет 1 секунды физического процесса с помощью нейронной сети требует примерно 0.004 секунды процессорного времени. То есть на 6 порядков быстрее по сравнению в гибридным генетическим алгоритмом. Управление, рассчитанное с помощью искусственной нейронной сети, отличается от точного. Однако, несмотря на данное отличие, обеспечивает достаточно точное следование по заданной траектории.

    Vetchanin E.V., Tenenev V.A., Kilin A.A.
    Optimal control of the motion in an ideal fluid of a screw-shaped body with internal rotors
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 741-759

    In this paper we consider the controlled motion of a helical body with three blades in an ideal fluid, which is executed by rotating three internal rotors. We set the problem of selecting control actions, which ensure the motion of the body near the predetermined trajectory. To determine controls that guarantee motion near the given curve, we propose methods based on the application of hybrid genetic algorithms (genetic algorithms with real encoding and with additional learning of the leader of the population by a gradient method) and artificial neural networks. The correctness of the operation of the proposed numerical methods is estimated using previously obtained differential equations, which define the law of changing the control actions for the predetermined trajectory.

    In the approach based on hybrid genetic algorithms, the initial problem of minimizing the integral functional reduces to minimizing the function of many variables. The given time interval is broken up into small elements, on each of which the control actions are approximated by Lagrangian polynomials of order 2 and 3. When appropriately adjusted, the hybrid genetic algorithms reproduce a solution close to exact. However, the cost of calculation of 1 second of the physical process is about 300 seconds of processor time.

    To increase the speed of calculation of control actions, we propose an algorithm based on artificial neural networks. As the input signal the neural network takes the components of the required displacement vector. The node values of the Lagrangian polynomials which approximately describe the control actions return as output signals . The neural network is taught by the well-known back-propagation method. The learning sample is generated using the approach based on hybrid genetic algorithms. The calculation of 1 second of the physical process by means of the neural network requires about 0.004 seconds of processor time, that is, 6 orders faster than the hybrid genetic algorithm. The control calculated by means of the artificial neural network differs from exact control. However, in spite of this difference, it ensures that the predetermined trajectory is followed exactly.

    Просмотров за год: 12. Цитирований: 1 (РИНЦ).
  4. Колчев А.А., Недопекин А.Е.
    Об одной модели смеси распределений вероятностей в радиотехнических измерениях
    Компьютерные исследования и моделирование, 2012, т. 4, № 3, с. 563-568

    В данной работе представлена модель смеси распределений вероятностей сигнала и шума. Как правило, при анализе данных в условиях неопределенности приходится использовать непараметрические критерии. Однако при анализе нестационарных данных при наличии неопределенности по виду закона распределения и его параметрам они могут оказаться малоэффективными. Рассматриваемая модель подразумевает реализацию случая априорной непараметрической неопределенности при обработке сигнала в условиях, когда возможно разделение сигнала и шума как компонентов, относящихся к разным генеральным совокупностям.

    Kolchev A.A., Nedopekin A.E.
    On one particular model of a mixture of the probability distributions in the radio measurements
    Computer Research and Modeling, 2012, v. 4, no. 3, pp. 563-568

    This paper presents a model mixture of probability distributions of signal and noise. Typically, when analyzing the data under conditions of uncertainty it is necessary to use nonparametric tests. However, such an analysis of nonstationary data in the presence of uncertainty on the mean of the distribution and its parameters may be ineffective. The model involves the implementation of a case of a priori non-parametric uncertainty in the processing of the signal at a time when the separation of signal and noise are related to different general population, is feasible.

    Просмотров за год: 3. Цитирований: 7 (РИНЦ).
  5. Деев А.А., Кальщиков А.А.
    Когерентный приемопередатчик с постоянной задержкой для синхронной оптоволоконной сети
    Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 141-155

    В статье предлагается реализация когерентного приемопередатчика с постоянной задержкой и возможностью свободно варьируемой сетки тактовых частот, используемой для тактирования периферийных ЦАП и АЦП, задач синхронизации устройств и передачи данных. Выбор необходимой сетки тактовых частот напрямую влияет на скорость передачи данных в сети, однако позволяет гибко настроить сеть для передачи тактовых сигналов и генерации синхроимпульсов с субнаносекундной точностью на всех устройствах в сети. Предложен метод повышения точности синхронизации до десятых долей наносекунды за счет использования цифровых фазовых детекторов и системы фазовой автоподстройки частоты (ФАПЧ) на ведомом устройстве. Использование высокоскоростных волоконно-оптических линий связи (ВОЛС) для задач синхронизации шкал времени, позволяет параллельно синхронизации производить обмен командами управления и сигнальными данными. Для упрощения и удешевления устройств синхронной сети приемопередатчиков предлагается использовать тактовый сигнал, восстановленный из сериализованных данных, и прошедший фильтрацию фазовых шумов, для формирования в системе ФАПЧ тактовых сигналов периферийных устройств, таких как ЦАП и АЦП, а также сигналов гетеродина. Представлены результаты многократных тестов синхронизации в предложенной синхронной сети.

    Deev A.A., Kalshchikov A.A.
    Coherent constant delay transceiver for a synchronous fiber optic network
    Computer Research and Modeling, 2023, v. 15, no. 1, pp. 141-155

    This paper proposes the implementation of a coherent transceiver with a constant delay and the ability to select any clock frequency grid used for clocking peripheral DACs and ADCs, tasks of device synchronization and data transmission. The choice of the required clock frequency grid directly affects the data transfer rate in the network, however, it allows one to flexibly configure the network for the tasks of transmitting clock signals and subnanosecond generation of sync signals on all devices in the network. A method for increasing the synchronization accuracy to tenths of nanoseconds by using digital phase detectors and a Phase Locked Loop (PLL) system on the slave device is proposed. The use of high-speed fiber-optic communication lines (FOCL) for synchronization tasks allows simultaneously exchanging control commands and signaling data. To simplify and reduce the cost of devices of a synchronous network of transceivers, it is proposed to use a clock signal restored from a data transmission line to filter phase noise and form a frequency grid in the PLL system for heterodyne signals and clock peripheral devices, including DAC and ADC. The results of multiple synchronization tests in the proposed synchronous network are presented.

  6. Калитин К.Ю., Невзоров А.А., Спасов А.А., Муха О.Ю.
    Распознавание эффектов и механизма действия препаратов на основе анализа внутричерепной ЭЭГ с помощью методов глубокого обучения
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 755-772

    Прогнозирование новых свойств лекарственных средств является основной задачей в рамках решения проблем полифармакологии, репозиционирования, а также изучения биологически активных веществ на доклиническом этапе. Идентификация фармакологических эффектов и взаимодействий «препарат – мишень» с использованием машинного обучения (включая методы глубокого обучения) набирает популярность в последние годы.

    Цель работы состояла в разработке метода распознавания психотропных эффектов и механизма действия (взаимодействий препарата с мишенью) на основании анализа биоэлектрической активности мозга с применением технологий искусственного интеллекта.

    Выполнялась регистрация электроэнцефалографических (ЭЭГ) сигналов крыс (4 канала, частота дискретизации — 500 Гц) после введения психотропных препаратов (габапентин, диазепам, карбамазепин, прегабалин, эсликарбазепин, феназепам, ареколин, коразол, пикротоксин, пилокарпин, хлоралгидрат). Сигналы (эпохи продолжительностью 2 с) преобразовывались в изображения $(2000 \times 4)$ и затем поступали на вход автоэнкодера. Выходные данные слоя «бутылочного горлышка» классифицировались и кластеризовались (с применением алгоритма t-SNE), а затем вычислялись расстояния между кластерами в пространстве параметров. В качестве альтернативны использовался подход, основанный на извлечении признаков с размерной редукцией при помощи метода главных компонент и классификацией методом опорных векторов с ядерной функцией (kSVM). Модели валидировались путем 5-кратной кроссвалидации.

    Точность классификации для 11 препаратов, полученная в ходе кросс-валидации, достигала $0,580 \pm 0,021$, что значительно превышает точность случайного классификатора, которая составляла $0,091 \pm 0,045$ $(p < 0,0001)$, и точность kSVM, равную $0,441 \pm 0,035$ $(p < 0,05)$. Получены t-SNE-карты параметров «бутылочного горлышка» сигналов интракраниальной ЭЭГ. Определена относительная близость кластеров сигналов в параметрическом пространстве.

    В настоящем исследовании представлен оригинальный метод биопотенциал-опосредованного прогнозирования эффектов и механизма действия (взаимодействия лекарственного средства с мишенью). Метод использует сверточные нейронные сети в сочетании с модифицированным алгоритмом избирательной редукции параметров. ЭЭГ-сигналы, зарегистрированные после введения препаратов, были представлены в едином пространстве параметров в сжатой форме. Полученные данные указывают на возможность распознавания паттернов нейронального отклика в ответ на введение различных психотропных препаратов с помощью предложенного нейросетевого классификатора и кластеризации.

    Kalitin K.Y., Nevzorov A.A., Spasov A.A., Mukha O.Y.
    Deep learning analysis of intracranial EEG for recognizing drug effects and mechanisms of action
    Computer Research and Modeling, 2024, v. 16, no. 3, pp. 755-772

    Predicting novel drug properties is fundamental to polypharmacology, repositioning, and the study of biologically active substances during the preclinical phase. The use of machine learning, including deep learning methods, for the identification of drug – target interactions has gained increasing popularity in recent years.

    The objective of this study was to develop a method for recognizing psychotropic effects and drug mechanisms of action (drug – target interactions) based on an analysis of the bioelectrical activity of the brain using artificial intelligence technologies.

    Intracranial electroencephalographic (EEG) signals from rats were recorded (4 channels at a sampling frequency of 500 Hz) after the administration of psychotropic drugs (gabapentin, diazepam, carbamazepine, pregabalin, eslicarbazepine, phenazepam, arecoline, pentylenetetrazole, picrotoxin, pilocarpine, chloral hydrate). The signals were divided into 2-second epochs, then converted into $2000\times 4$ images and input into an autoencoder. The output of the bottleneck layer was subjected to classification and clustering using t-SNE, and then the distances between resulting clusters were calculated. As an alternative, an approach based on feature extraction with dimensionality reduction using principal component analysis and kernel support vector machine (kSVM) classification was used. Models were validated using 5-fold cross-validation.

    The classification accuracy obtained for 11 drugs during cross-validation was $0.580 \pm 0.021$, which is significantly higher than the accuracy of the random classifier $(0.091 \pm 0.045, p < 0.0001)$ and the kSVM $(0.441 \pm 0.035, p < 0.05)$. t-SNE maps were generated from the bottleneck parameters of intracranial EEG signals. The relative proximity of the signal clusters in the parametric space was assessed.

    The present study introduces an original method for biopotential-mediated prediction of effects and mechanism of action (drug – target interaction). This method employs convolutional neural networks in conjunction with a modified selective parameter reduction algorithm. Post-treatment EEGs were compressed into a unified parameter space. Using a neural network classifier and clustering, we were able to recognize the patterns of neuronal response to the administration of various psychotropic drugs.

  7. Бернадотт А.К., Мазурин А.Д.
    Оптимизация словаря команд на основе статистического критерия близости в задаче распознавания невербальной речи
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 675-690

    В исследовании мы сосредоточились на задаче классификации невербальной речи для разработки интерфейса «мозг–компьютер» (ИМК) на основе электроэнцефалографии (ЭЭГ), который будет способен помочь людям с ограниченными возможностями и расширить возможности человека в повседневной жизни. Ранее наши исследования показали, что беззвучная речь для некоторых слов приводит к почти идентичным распределениям ЭЭГ-данных. Это явление негативно влияет на точность классификации нейросетевой модели. В этой статье предлагается метод обработки данных, который различает статисти- чески удаленные и неразделимые классы данных. Применение предложенного подхода позволяет достичь цели максимального увеличения смысловой нагрузки словаря, используемого в ИМК.

    Кроме того, мы предлагаем статистический прогностический критерий точности бинарной классификации слов в словаре. Такой критерий направлен на оценку нижней и верхней границ поведения классификаторов только путем измерения количественных статистических свойств данных (в частности, с использованием метода Колмогорова – Смирнова). Показано, что более высокие уровни точности классификации могут быть достигнуты за счет применения предложенного прогностического критерия, позволяющего сформировать оптимизированный словарь с точки зрения семантической нагрузки для ИМК на основе ЭЭГ. Кроме того, использование такого обучающего набора данных для задач классификации по словарю обеспечивает статистическую удаленность классов за счет учета семантических и фонетических свойств соответствующих слов и улучшает поведение классификации моделей распознавания беззвучной речи.

    Bernadotte A., Mazurin A.D.
    Optimization of the brain command dictionary based on the statistical proximity criterion in silent speech recognition task
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 675-690

    In our research, we focus on the problem of classification for silent speech recognition to develop a brain– computer interface (BCI) based on electroencephalographic (EEG) data, which will be capable of assisting people with mental and physical disabilities and expanding human capabilities in everyday life. Our previous research has shown that the silent pronouncing of some words results in almost identical distributions of electroencephalographic signal data. Such a phenomenon has a suppressive impact on the quality of neural network model behavior. This paper proposes a data processing technique that distinguishes between statistically remote and inseparable classes in the dataset. Applying the proposed approach helps us reach the goal of maximizing the semantic load of the dictionary used in BCI.

    Furthermore, we propose the existence of a statistical predictive criterion for the accuracy of binary classification of the words in a dictionary. Such a criterion aims to estimate the lower and the upper bounds of classifiers’ behavior only by measuring quantitative statistical properties of the data (in particular, using the Kolmogorov – Smirnov method). We show that higher levels of classification accuracy can be achieved by means of applying the proposed predictive criterion, making it possible to form an optimized dictionary in terms of semantic load for the EEG-based BCIs. Furthermore, using such a dictionary as a training dataset for classification problems grants the statistical remoteness of the classes by taking into account the semantic and phonetic properties of the corresponding words and improves the classification behavior of silent speech recognition models.

  8. Козырь П.С., Савельев А.И.
    Анализ эффективности методов машинного обучения в задаче распознавания жестов на основе данных электромиографических сигналов
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 175-194

    При разработке систем человеко-машинных интерфейсов актуальной является задача распознавания жестов. Для выявления наиболее эффективного метода распознавания жестов был проведен анализ различных методов машинного обучения, используемых для классификации движений на основе электромиографических сигналов мышц. Были рассмотрены такие методы, как наивный байесовский классификатор (НБК), дерево решений, случайный лес, градиентный бустинг, метод опорных векторов, метод $k$-ближайших соседей, а также ансамбли методов (НБК и дерево решений, НБК и градиентный бустинг, градиентный бустинг и дерево решений). В качестве метода получения информации о жестах была выбрана электромиография. Такое решение не требует расположения руки в поле зрения камеры и может быть использовано для распознавания движений пальцев рук. Для проверки эффективности выбранных методов распознавания жестов было разработано устройство регистрации электромиографического сигнала мышц предплечья, которое включает в себя три электрода и ЭМГ-датчик, соединенный с микрокон- троллером и блоком питания. В качестве жестов были выбраны: сжатие кулака, знак «большой палец», знак «Виктория», сжатие указательного пальца и взмах рукой справа налево. Оценка эффективности методов классификации проводилась на основе значений доли правильных ответов, точности, полноты, а также среднего значения времени работы классификатора. Данные параметры были рассчитаны для трех вариантов расположения электромиографических электродов на предплечье. По результатам тести- рования, наиболее эффективными методами являются метод $k$-ближайших соседей, случайный лес и ансамбль НБК и градиентного бустинга, средняя точность которого для трех положений электродов составила 81,55 %. Также было определено положение электродов, при котором методы машинного обучения достигают максимального значения точности распознавания. При таком положении один из дифференциальных электродов располагается на месте пересечения глубокого сгибателя пальцев и длинного сгибателя большого пальца, второй — над поверхностным сгибателем пальцев

    Gesture recognition is an urgent challenge in developing systems of human-machine interfaces. We analyzed machine learning methods for gesture classification based on electromyographic muscle signals to identify the most effective one. Methods such as the naive Bayesian classifier (NBC), logistic regression, decision tree, random forest, gradient boosting, support vector machine (SVM), $k$-nearest neighbor algorithm, and ensembles (NBC and decision tree, NBC and gradient boosting, gradient boosting and decision tree) were considered. Electromyography (EMG) was chosen as a method of obtaining information about gestures. This solution does not require the location of the hand in the field of view of the camera and can be used to recognize finger movements. To test the effectiveness of the selected methods of gesture recognition, a device was developed for recording the EMG signal, which includes three electrodes and an EMG sensor connected to the microcontroller and the power supply. The following gestures were chosen: clenched fist, “thumb up”, “Victory”, squeezing an index finger and waving a hand from right to left. Accuracy, precision, recall and execution time were used to evaluate the effectiveness of classifiers. These parameters were calculated for three options for the location of EMG electrodes on the forearm. According to the test results, the most effective methods are $k$-nearest neighbors’ algorithm, random forest and the ensemble of NBC and gradient boosting, the average accuracy of ensemble for three electrode positions was 81.55%. The position of the electrodes was also determined at which machine learning methods achieve the maximum accuracy. In this position, one of the differential electrodes is located at the intersection of the flexor digitorum profundus and flexor pollicis longus, the second — above the flexor digitorum superficialis.

  9. Алпатов А.В., Петерс Е.А., Пасечнюк Д.А., Райгородский А.М.
    Стохастическая оптимизация в задаче цифрового предыскажения сигнала
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 399-416

    В данной статье осуществляется сравнение эффективности некоторых современных методов и практик стохастической оптимизации применительно к задаче цифрового предыскажения сигнала (DPD), которое является важной составляющей процесса обработки сигнала на базовых станциях, обеспечивающих беспроводную связь. В частности, рассматривается два круга вопросов о возможностях применения стохастических методов для обучения моделей класса Винера – Гаммерштейна в рамках подхода минимизации эмпирического риска: касательно улучшения глубины и скорости сходимости данного метода оптимизации и относительно близости самой постановки задачи (выбранной модели симуляции) к наблюдаемому в действительности поведению устройства. Так, в первой части этого исследования внимание будет сосредоточено на вопросе о нахождении наиболее эффективного метода оптимизации и дополнительных к нему модификаций. Во второй части предлагается новая квази-онлайн-постановка задачи и, соответственно, среда для тестирования эффективности методов, благодаря которым результаты численного моделирования удается привести в соответствие с поведением реального прототипа устройства DPD. В рамках этой новой постановки далее осуществляется повторное тестирование некоторых избранных практик, более подробно рассмотренных в первой части исследования, и также обнаруживаются и подчеркиваются преимущества нового лидирующего метода оптимизации, оказывающегося теперь также наиболее эффективным и в практических тестах. Для конкретной рассмотренной модели максимально достигнутое улучшение глубины сходимости составило 7% в стандартном режиме и 5% в онлайн-постановке (при том что метрика сама по себе имеет логарифмическую шкалу). Также благодаря дополнительным техникам оказывается возможным сократить время обучения модели DPD вдвое, сохранив улучшение глубины сходимости на 3% и 6% для стандартного и онлайн-режимов соответственно. Все сравнения производятся с методом оптимизации Adam, который был отмечен как лучший стохастический метод для задачи DPD из рассматриваемых в предшествующей работе [Pasechnyuk et al., 2021], и с методом оптимизации Adamax, который оказывается наиболее эффективным в предлагаемом онлайн-режиме.

    Alpatov A.V., Peters E.A., Pasechnyuk D.A., Raigorodsky A.M.
    Stochastic optimization in digital pre-distortion of the signal
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 399-416

    In this paper, we test the performance of some modern stochastic optimization methods and practices with respect to the digital pre-distortion problem, which is a valuable part of processing signal on base stations providing wireless communication. In the first part of our study, we focus on the search for the best performing method and its proper modifications. In the second part, we propose the new, quasi-online, testing framework that allows us to fit our modeling results with the behavior of real-life DPD prototype, retest some selected of practices considered in the previous section and approve the advantages of the method appearing to be the best under real-life conditions. For the used model, the maximum achieved improvement in depth is 7% in the standard regime and 5% in the online regime (metric itself is of logarithmic scale). We also achieve a halving of the working time preserving 3% and 6% improvement in depth for the standard and online regime, respectively. All comparisons are made to the Adam method, which was highlighted as the best stochastic method for DPD problem in [Pasechnyuk et al., 2021], and to the Adamax method, which is the best in the proposed online regime.

  10. В работе решается задача установления зависимости потенциала пространственной селекции полезных и мешающих сигналов по критерию отношения «сигнал/помеха» от погрешности позиционирования устройств при диаграммообразовании по местоположению на базовой станции, оборудованной антенной решеткой. Конфигурируемые параметры моделирования включают планарную антенную решетку с различным числом антенных элементов, траекторию движения, а также точность определения местоположения по метрике среднеквадратического отклонения оценки координат устройств. В модели реализованы три алгоритма управления формой диаграммы направленности: 1) управление положением одного максимума и одного нуля; 2) управление формой и шириной главного лепестка; 3) адаптивная схема. Результаты моделирования показали, что первый алгоритм наиболее эффективен при числе элементов антенной решетки не более 5 и погрешности позиционирования не более 7 м, а второй алгоритм целесообразно использовать при числе элементов антенной решетки более 15 и погрешности позиционирования более 5 м. Адаптивное диаграммообразование реализуется по обучающему сигналу и обеспечивает оптимальную пространственную селекцию полезных и мешающих сигналов без использования данных о местоположении, однако отличается высокой сложностью аппаратной реализации. Скрипты разработанных моделей доступны для верификации. Полученные результаты могут использоваться при разработке научно обоснованных рекомендаций по управлению лучом в сверхплотных сетях радиодоступа миллиметрового диапазона пятого и последующих поколений.

    Fokin G.A., Volgushev D.B.
    Models for spatial selection during location-aware beamforming in ultra-dense millimeter wave radio access networks
    Computer Research and Modeling, 2024, v. 16, no. 1, pp. 195-216

    The work solves the problem of establishing the dependence of the potential for spatial selection of useful and interfering signals according to the signal-to-interference ratio criterion on the positioning error of user equipment during beamforming by their location at a base station, equipped with an antenna array. Configurable simulation parameters include planar antenna array with a different number of antenna elements, movement trajectory, as well as the accuracy of user equipment location estimation using root mean square error of coordinate estimates. The model implements three algorithms for controlling the shape of the antenna radiation pattern: 1) controlling the beam direction for one maximum and one zero; 2) controlling the shape and width of the main beam; 3) adaptive beamforming. The simulation results showed, that the first algorithm is most effective, when the number of antenna array elements is no more than 5 and the positioning error is no more than 7 m, and the second algorithm is appropriate to employ, when the number of antenna array elements is more than 15 and the positioning error is more than 5 m. Adaptive beamforming is implemented using a training signal and provides optimal spatial selection of useful and interfering signals without device location data, but is characterized by high complexity of hardware implementation. Scripts of the developed models are available for verification. The results obtained can be used in the development of scientifically based recommendations for beam control in ultra-dense millimeter-wave radio access networks of the fifth and subsequent generations.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.