Текущий выпуск Номер 1, 2024 Том 16

Все выпуски

Результаты поиска по 'позиционирование':
Найдено статей: 9
  1. От редакции
    Компьютерные исследования и моделирование, 2016, т. 8, № 5, с. 719-720
    Просмотров за год: 1.
  2. От редакции
    Компьютерные исследования и моделирование, 2019, т. 11, № 4, с. 559-561
    Просмотров за год: 4.
  3. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 5-10
  4. Кащенко Н.М., Ишанов С.А., Зинин Л.В., Мациевский С.В.
    Численный метод решения двумерного уравнения переноса при моделировании ионосферы Земли на основе монотонизированной Z-схемы
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 43-58

    Целью работы является исследование конечно-разностной схемы второго порядка точности, которая создана на основе Z-схемы. Это исследование состоит в численном решении нескольких двумерных дифференциальных уравнений, моделирующих перенос несжимаемой среды.

    Одна из реальных задач, при решении которых возникают подобные уравнения, — это численное моделирование сильно нестационарных среднемасштабных процессов в земной ионосфере. Вследствие того, что процессы переноса в ионосферной плазме контролируются магнитным полем, в поперечном к магнитному полю направлении предполагается выполнение условия несжимаемости плазмы. По той же причине в продольном к магнитному полю направлении могут возникать достаточно высокие скорости тепло- и массопереноса.

    Актуальной задачей при ионосферном моделировании является исследование плазменных неустойчивостей различных масштабов, которые возникают прежде всего в полярной и экваториальной областях. При этом среднемасштабные неоднородности, имеющие характерные размеры 1–50 км, создают условия для развития мелкомасштабных неустойчивостей. Последние приводят к явлению F-рассеяния, которое существенно влияет на точность работы спутниковых систем позиционирования, а также других космических и наземных радиоэлектронных систем.

    Используемые для одновременного моделирования таких разномасштабных процессов разностные схемы должны иметь высокое разрешение. Кроме того, эти разностные схемы должны быть, с одной стороны, достаточно точными, а с другой стороны — монотонными. Причиной таких противоречивых требований является то, что неустойчивости усиливают погрешности разностных схем, особенно погрешности дисперсионного типа. Подобная раскачка погрешностей при численном решении обычно приводит к нефизическим результатам.

    При численном решении трехмерных математических моделей ионосферной плазмы используется следующая схема расщепления по физическим процессам: первый шаг расщепления осуществляет продольный перенос, второй шаг расщепления осуществляет поперечный перенос. Исследуемая в работе конечно-разностная схема второго порядка точности приближенно решает уравнения поперечного пере- носа. Эта схема строится с помощью нелинейной процедуры монотонизации Z-схемы, которая является одной из схем второго порядка точности. При этой монотонизации используется нелинейная коррекция по так называемым «косым разностям». «Косые разности» содержат узлы расчетной сетки, относящиеся к разным слоям времени.

    Исследования проводились для двух случаев. В первом случае компоненты вектора переноса были знакопостоянны, во втором — знакопеременны в области моделирования. Численно получены диссипативные и дисперсионные характеристики схемы для различных видов ограничивающих функций.

    Результаты численных экспериментов позволяют сделать следующие выводы.

    1. Для разрывного начального профиля лучшие свойства показал ограничитель SuperBee.

    2. Для непрерывного начального профиля при больших пространственных шагах лучше ограничитель SuperBee, а при малых шагах лучше ограничитель Koren.

    3. Для гладкого начального профиля лучшие результаты показал ограничитель Koren.

    4. Гладкий ограничитель F показал результаты, аналогичные Koren.

    5. Ограничители разного типа оставляют дисперсионные ошибки, при этом зависимости дисперсионных ошибок от параметров схемы имеют большую вариабельность и сложным образом зависят от параметров этой схемы.

    6. Во всех расчетах численно подтверждена монотонность рассматриваемой разностной схемы. Для одномерного уравнения численно подтверждено свойство неувеличения вариации для всех указанных функций-ограничителей.

    7. Построенная разностная схема при шагах по времени, не превышающих шаг Куранта, является монотонной и показывает хорошие характеристики точности для решений разных типов. При превышении шага Куранта схема остается устойчивой, но становится непригодной для задач неустойчивости, поскольку условия монотонности перестают в этом случае выполняться.

  5. Деваев В.М., Маханько А.А.
    Разработка системы управления беспилотного дистанционно-пилотируемого сельхозсамолета (БДПС) на базе самолета МВ-500
    Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 315-323

    В статье приведены промежуточные результаты разработки системы управления дистанционно-пилотируемого сельскохозяйственного самолета (БДПС). Разработана концепция использования автоматизированного комплекса для выполнения авиахимической работ (АХР), предназначенного для обработки полей, акваторий, лесов с целью защиты от вредителей растений, внесения удобрений. Базовым компонентом комплекса является пилотируемый сельскохозяйственный самолет МВ-500 разработки ООО «Фирма «МВЕН» (г. Казань). Использование самолета в беспилотном режиме обеспечит увеличение производительности самолета, увеличит полезную нагрузку.

    В статье определен состав комплекса для автоматизации АХР: самолет, наземный пункт автоматизированного управления, бортовая аппаратура для автоматизированного управления самолетом и формирования карты высот обрабатываемого участка, спутниковая система точного позиционирования, необходимая для автоматизации управления самолетом. Самолет оснащается системой автоматизированного управления, обеспечивающей дистанционное управление взлетом и посадкой и автоматическое управление траекторией полета на сверхмалой высоте при выполнении АХР и выполнения пространственных разворотов на границах обрабатываемых участков. Взлет, посадка, вывод самолета в зону выполнения АХР предлагается производить с помощью летчика оператора с наземного пункта управления. Наземный пункт управления должен обеспечивать прием и отображение на экране оператора пилотажно-навигационной информации и нескольких видов с борта самолета. Оператор может управлять поочередно несколькими самолетами на этих этапах полета с помощью органов управления наземного пункта. В дальнейшем планируется автоматизировать и эти этапы полета, оставив за летчиком- оператором функции контроля и возможности дистанционного управления в особых случаях. Для навигации самолета при выполнении АХР на борту установлена аппаратура высокоточного позиционирования RTK (Real Time Kinematic), обеспечивающая измерение с сантиметровой точностью координат и высот самолета относительно базовой станции, установленной в наземном пункте управления. Перед выполнением АХР строится трехмерная цифровая карта обрабатываемого участка путем дополнения существующих кадастровых карт измерениями высот участка, выполняемых с помощью бортовых радио и оптического высотомеров того же самолета.

    К настоящему времени изготовлены и протестированы следующие компоненты системы: дистанционно управляемая модель самолета МВ-500 в масштабе 1:5, система спутникового позиционирования; система для получения изображения и телеметрической информации с борта модели; автопилот; методы получения 3-мерных цифровых карт участков и планирования траекторий полета при АХР.

    Просмотров за год: 20.
  6. Попов Д.И., Климчик А.С.
    Моделирование жесткости для шагающих роботов
    Компьютерные исследования и моделирование, 2019, т. 11, № 4, с. 631-651

    В работе рассматривается построение модели жесткости для антропоморфных платформ. Применяется эластостатическая модель жесткости для определения ошибок позиционирования для нижних конечностей робота. Одной из ключевых проблем в достижении быстрой и стабильной ходьбы двуногого робота являются отклонения, вызванные податливостью элементов робота. Эта проблема была решена с использованием метода виртуальных пружин для моделирования жесткости и нахождения деформаций, вызванных весом робота и силами, возникающими во время ходьбы в одноопорной и двухопорной фазах.

    Для моделирования робота в фазе одноопорной поддержки робот представлен как последовательная кинематическая цепочка с базой в месте контакта опорной ноги и рабочим органом в ступне свободной ноги. Для фазы двухопорной поддержки робот моделируется как параллельный манипулятор с базой в точках контакта ног с поверхностью и рабочим органом в тазу.

    В большинстве работ, связанных с моделированием жесткости, как правило, моделируется только податливость шарниров. В данной работе используются два метода построения модели: с учетом податливости звеньев и шарниров и с учетом податливости только шарниров. При этом производится идентификация значения жесткости каждого шарнира на полной модели, что позволяет учесть часть влияния податливости звена, пересчитанную на шарнир. Идентификация параметров жесткости шарниров произведена для двух антропоморфных роботов: малой платформы и полноразмерного AR-601M.

    Для идентифицированных параметров были построены карты отклонений, показывающие ошибку позиционирования в зависимости от положения ступни робота в рабочем пространстве. Максимальную амплитуду в данном случае имеет Z компонента вектора отклонений вследствие влияния массы робота на его конструкцию.

    Просмотров за год: 3.
  7. В данной работе показаны преимущества использования алгоритмов искусственного интеллекта для планирования эксперимента, позволяющих повысить точность идентификации параметров для эластостатической модели робота. Планирование эксперимента для робота заключается в подборе оптимальных пар «конфигурация – внешняя сила» для использования в алгоритмах идентификации, включающих в себя несколько основных этапов. На первом этапе создается эластостатическая модель робота, учитывающая все возможные механические податливости. Вторым этапом выбирается целевая функция, которая может быть представлена как классическими критериями оптимальности, так и критериями, напрямую следующими из желаемого применения робота. Третьим этапом производится поиск оптимальных конфигураций методами численной оптимизации. Четвертым этапом производится замер положения рабочего органа робота в полученных конфигурациях под воздействием внешней силы. На последнем, пятом, этапе выполняется идентификация эластостатичесих параметров манипулятора на основе замеренных данных.

    Целевая функция для поиска оптимальных конфигураций для калибровки индустриального робота является ограниченной в силу механических ограничений как со стороны возможных углов вращения шарниров робота, так и со стороны возможных прикладываемых сил. Решение данной многомерной и ограниченной задачи является непростым, поэтому предлагается использовать подходы на базе искусственного интеллекта. Для нахождения минимума целевой функции были использованы следующие методы, также иногда называемые эвристическими: генетические алгоритмы, оптимизация на основе роя частиц, алгоритм имитации отжига т. д. Полученные результаты были проанализированы с точки зрения времени, необходимого для получения конфигураций, оптимального значения, а также итоговой точности после применения калибровки. Сравнение показало преимущество рассматриваемых техник оптимизации на основе искусственного интеллекта над классическими методами поиска оптимального значения. Результаты данной работы позволяют уменьшить время, затрачиваемое на калибровку, и увеличить точность позиционирования рабочего органа робота после калибровки для контактных операций с высокими нагрузками, например таких, как механическая обработка и инкрементальная формовка.

  8. Васюков А.В., Беклемышева К.А., Онучин Е.С., Товарнова Н.А., Петров И.Б.
    Расчет скорости поперечной волны при ударе по предварительно нагруженным нитям
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 887-897

    В работе рассматривается задача о поперечном ударе по тонкой предварительно нагруженной нити. Общепринятая теория о поперечному даре по тонкой нити отталкивается от классических публикаций Рахматулина и Смита. На основании теории Рахматулина – Смита получены соотношения, широко используемые в инженерной практике. Однако существуют многочисленные данные о том, что экспериментальные результаты могут существенно отличаться от оценок, сделанных на базе этих соотношений. Краткий обзор факторов, которые вызывают отличия, приведен в тексте статьи.

    Основное внимание в данной статье уделяется скорости поперечной волны, формирующейся при ударе, так как только ее можно непосредственно наблюдать и измерять с помощью высокоскоростной съемки или иных методов. Рассматривается влияние предварительного натяжения нити на скорость волны. Данный фактор важен, так как он неизбежно возникает в результатах натурных испытаний в силу того, что надежное закрепление и точное позиционирование нити на экспериментальной установке требует некоторого ее натяжения. В данной работе показано, что предварительная деформация нити существенно влияет на скорость поперечной волны, возникающей в ходе ударного взаимодействия.

    Выполнены расчеты серии постановок для нитей Kevlar 29 и Spectra 1000. Для различных уровней начального натяжения получены скорости поперечных волн. Приведено прямое сравнение численных результатов и аналитических оценок с данными экспериментов. Для рассмотренных постановок скорость поперечной волны в свободной и в нагруженной нити отличалась практически в два раза. Таким образом, показано, что измерения, основанные на высокоскоростной съемке и анализе наблюдаемых поперечных волн, должны учитывать предварительную деформацию нити.

    В работе предложена формула для быстрой оценки скорости поперечной волны в натянутых нитях. Данная формула получена из основных соотношений теории Рахматулина – Смита в предположении большой начальной деформации нити. На примере рассмотренных постановок для Kevlar 29 и Spectra 1000 показано, что полученная формула может давать существенно лучшие результаты, чем классическое приближение. Также показано, что прямой численный расчет дает результаты, которые оказываются значительно ближе к экспериментальным данным, чем любая из рассмотренных аналитических оценок.

  9. В работе решается задача установления зависимости потенциала пространственной селекции полезных и мешающих сигналов по критерию отношения «сигнал/помеха» от погрешности позиционирования устройств при диаграммообразовании по местоположению на базовой станции, оборудованной антенной решеткой. Конфигурируемые параметры моделирования включают планарную антенную решетку с различным числом антенных элементов, траекторию движения, а также точность определения местоположения по метрике среднеквадратического отклонения оценки координат устройств. В модели реализованы три алгоритма управления формой диаграммы направленности: 1) управление положением одного максимума и одного нуля; 2) управление формой и шириной главного лепестка; 3) адаптивная схема. Результаты моделирования показали, что первый алгоритм наиболее эффективен при числе элементов антенной решетки не более 5 и погрешности позиционирования не более 7 м, а второй алгоритм целесообразно использовать при числе элементов антенной решетки более 15 и погрешности позиционирования более 5 м. Адаптивное диаграммообразование реализуется по обучающему сигналу и обеспечивает оптимальную пространственную селекцию полезных и мешающих сигналов без использования данных о местоположении, однако отличается высокой сложностью аппаратной реализации. Скрипты разработанных моделей доступны для верификации. Полученные результаты могут использоваться при разработке научно обоснованных рекомендаций по управлению лучом в сверхплотных сетях радиодоступа миллиметрового диапазона пятого и последующих поколений.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.