Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Математическое моделирование изгиба круговой пластинки с применением $S$-сплайнов
Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 977-988Настоящая работа посвящена применению теории недавно разработанных полулокальных сглаживающих сплайнов, или $S$-сплайнов высоких степеней, к решению задач теории упругости. $S$-сплайн — кусочно-полиномиальная функция, коэффициенты полиномов которой определяются из двух условий: первая часть коэффициентов определяется условиями гладкой склейки, остальные определяются методом наименьших квадратов. Мы рассмотрим, каким образом могут быть применены сплайны 7-ой степени класса $C^4$ при решении бигармонического уравнения на круге.
Ключевые слова: аппроксимация, сплайн, численные методы, метод конечных элементов, математическая физика, теория упругости.
Mathematical modeling of bending of a circular plate using $S$-splines
Computer Research and Modeling, 2015, v. 7, no. 5, pp. 977-988Просмотров за год: 4.This article is dedicated to the use of higher degree $S$-splines for solving equations of the elasticity theory. As an example we consider the solution to the equation of bending of a plate on a circle. $S$-spline is a piecewise-polynomial function. Its coefficients are defined by two conditions. The first part of the coefficients are defined by the smoothness of the spline. The rest are determined using the least-squares method. We consider class $C^4$ 7th degree $S$-splines.
-
Научные и педагогические школы Александра Сергеевича Холодова
Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 561-579В развитии науки важную роль играют научные школы — объединения исследователей, связанные общей проблемой, идеями и методами, используемыми для решения проблемы. Научные школы формируются вокруг лидера и объединяющей идеи.
За время научной деятельности академика А. С. Холодова вокруг него сформировалось несколько научных школ. В обзоре делается попытка представить основные научные направления, вокруг которых сформировались яркие коллективы с общими системами взглядов и подходами к исследованиям. В обзоре отмечается эта общая основа. Во-первых, это развитие группы численных методов для решения систем дифференциальных уравнений в частных производных гиперболического типа — сеточно-характеристические методы. Во-вторых, описание численных методов в пространствах неопределенных коэф- фициентов. Этот подход развивался как для всех типов уравнений в частных производных, так и для обыкновенных дифференциальных уравнений.
На основе предложенных А. С. Холодовым численных подходов сложились научные коллективы, работающие в разных предметных областях. Это математическое моделирование динамики плазмы, динамики деформируемого твердого тела, некоторых задач биологии, биофизики, медицинской физики и биомеханики. Сравнительно новые направления — решение задач на графах (процессы транспортировки электроэнергии, моделирование транспортных потоков на дорожной сети и т. д.).
В обзоре делается попытка отследить деятельность научных школ от момента их зарождения до настоящего времени, проследить связь работ А. С. Холодова с работами его учеников и коллег. Полный обзор деятельности всех научных школ, сформировавшихся вокруг Александра Сергеевча, невозможен ввиду огромного количества и разнообразия научных результатов.
Делается также попытка связать деятельность научных школ с появлением научно-образовательной школы в Московском физико-техническом институте.
Ключевые слова: научная школа, сеточно-характеристические методы, пространства неопределенных коэффициентов, динамика плазмы, динамика деформируемого твердого тела, биомеханика, процессы на графах.
Scientific and pedagogical schools founded by A. S. Kholodov
Computer Research and Modeling, 2018, v. 10, no. 5, pp. 561-579Просмотров за год: 42.In the science development an important role the scientific schools are played. This schools are the associations of researchers connected by the common problem, the ideas and the methods used for problems solution. Usually Scientific schools are formed around the leader and the uniting idea.
The several sciences schools were created around academician A. S. Kholodov during his scientific and pedagogical activity.
This review tries to present the main scientific directions in which the bright science collectives with the common frames of reference and approaches to researches were created. In the review this common base is marked out. First, this is development of the group of numerical methods for hyperbolic type systems of partial derivatives differential equations solution — grid and characteristic methods. Secondly, the description of different numerical methods in the undetermined coefficients spaces. This approach developed for all types of partial equations and for ordinary differential equations.
On the basis of A. S. Kholodov’s numerical approaches the research teams working in different subject domains are formed. The fields of interests are including mathematical modeling of the plasma dynamics, deformable solid body dynamics, some problems of biology, biophysics, medical physics and biomechanics. The new field of interest includes solving problem on graphs (such as processes of the electric power transportation, modeling of the traffic flows on a road network etc).
There is the attempt in the present review analyzed the activity of scientific schools from the moment of their origin so far, to trace the connection of A. S. Kholodov’s works with his colleagues and followers works. The complete overview of all the scientific schools created around A. S. Kholodov is impossible due to the huge amount and a variety of the scientific results.
The attempt to connect scientific schools activity with the advent of scientific and educational school in Moscow Institute of Physics and Technology also becomes.
-
FlowVision: индустриальная вычислительная гидродинамика
Компьютерные исследования и моделирование, 2017, т. 9, № 1, с. 5-20В работе представлена новая версия программного комплекса FlowVision, предназначенного для автоматизации инженерных расчетов в области вычислительной гидродинамики: FlowVision 3.09.05. Программный комплекс (ПК) FlowVision используется для решения различных прикладных задач в различных областях промышленности. Его популярность основана на том, что он позволяет решать сложные нетрадиционные задачи, находящиеся на стыке различных дисциплин, с одной стороны, и, с другой стороны, на парадигме полной автоматизации таких трудоемких для инженера процессов, как построение расчетной сетки. FlowVision — это программный комплекс, полностью отчуждаемый от разработчиков. Он имеет развитый графический интерфейс, систему задания расчетного проекта и систему визуализации течений различными методами — от построения контуров (для скалярных переменных) и векторов (для векторных переменных) на плоскостях и поверхностях до объемной визуализации расчетных данных. Кроме этого, ПК FlowVision предоставляет пользователю возможность вычислять интегральные характеристики на поверхностях и в ограниченных объемах.
ПК основан на конечно-объемном подходе к аппроксимации основных уравнений движения жидкости. В нем реализованы явный и неявный методы решения этих уравнений. ПК имеет автоматический построитель неструктурированной сетки с возможностью ее локальной динамической адаптации. В ПК реализован двухуровневый параллелизм, позволяющий эффективно проводить расчеты на компьютерах, имеющих распределенную и общую память одновременно. FlowVision обладает широким спектром физико-математических моделей: турбулентности (URANS, LES, ILES), горения, массопереноса с учетом химических превращений и радиоактивного распада, электрогидродинамики.
FlowVision позволяет решать задачи движения жидкостей со скоростями, соответствующими несжимаемому или гиперзвуковому режимам за счет использования все-скоростного метода расщепления по физическим переменным для решения уравнений Навье–Стокса. FlowVision позволяет решать междисциплинарные задачи с использованием различных средств моделирования, например: моделировать многофазные течения методом VOF, обтекание подвижных тел с помощью эйлерова подхода при неподвижной расчетной сетке, моделировать вращающиеся машины с использованием метода скользящей сетки, решать задачи взаимодействия жидкости и конструкций методом двухстороннего сопряжения FlowVision с конечно-элементными кодами. В данной работе показаны примеры решения задач-вызовов: a) посадка космического корабля на воду при торможении ракетными двигателями, где есть граница раздела «воздух–вода», подвижные тела и взаимодействие сверхзвуковой струи газа с границей раздела «вода–воздух»; б) моделирование работы человеческого сердца с искусственными и живыми клапанами, спроектированными на базе томографических исследований, с использованием двухстороннего сопряжения «жидкостной» расчетной области с конечно-элементной моделью мышц сердца.
Ключевые слова: индустриальная вычислительная гидродинамика, газодинамика, конечно-объемный метод, уравнения Навье–Стокса, расчет взаимодействия жидкости и конструкции.
FlowVision: Industrial computational fluid dynamics
Computer Research and Modeling, 2017, v. 9, no. 1, pp. 5-20Просмотров за год: 30. Цитирований: 8 (РИНЦ).The work submits new release of the FlowVision software designed for automation of engineering calculations in computational fluid dynamics: FlowVision 3.09.05. The FlowVision software is used for solving different industrial problems. Its popularity is based on the capability to solve complex non-tradition problems involving different physical processes. The paradigm of complete automation of labor-intensive and time-taking processes like grid generation makes FlowVision attractive for many engineers. FlowVision is completely developer-independent software. It includes an advanced graphical interface, the system for specifying a computational project as well as the system for flow visualization on planes, on curvilinear surfaces and in volume by means of different methods: plots, color contours, iso-lines, iso-surfaces, vector fields. Besides that, FlowVision provides tools for calculation of integral characteristics on surfaces and in volumetric regions.
The software is based on the finite-volume approach to approximation of the partial differential equations describing fluid motion and accompanying physical processes. It provides explicit and implicit methods for time integration of these equations. The software includes automated generator of unstructured grid with capability of its local dynamic adaptation. The solver involves two-level parallelism which allows calculations on computers with distributed and shared memory (coexisting in the same hardware). FlowVision incorporates a wide spectrum of physical models: different turbulence models, models for mass transfer accounting for chemical reactions and radioactive decay, several combustion models, a dispersed phase model, an electro-hydrodynamic model, an original VOF model for tracking moving interfaces. It should be noted that turbulence can be simulated within URANS, LES, and ILES approaches. FlowVision simulates fluid motion with velocities corresponding to all possible flow regimes: from incompressible to hypersonic. This is achieved by using an original all-speed velocity-pressure split algorithm for integration of the Navier-Stokes equations.
FlowVision enables solving multi-physic problems with use of different modeling tools. For instance, one can simulate multi-phase flows with use of the VOF method, flows past bodies moving across a stationary grid (within Euler approach), flows in rotary machines with use of the technology of sliding grid. Besides that, the software solves fluid-structure interaction problems using the technology of two-way coupling of FlowVision with finite-element codes. Two examples of solving challenging problems in the FlowVision software are demonstrated in the given article. The first one is splashdown of a spacecraft after deceleration by means of jet engines. This problem is characterized by presence of moving bodies and contact surface between the air and the water in the computational domain. The supersonic jets interact with the air-water interphase. The second problem is simulation of the work of a human heart with artificial and natural valves designed on the basis of tomographic investigations with use of a finite-element model of the heart. This problem is characterized by two-way coupling between the “liquid” computational domain and the finite-element model of the hart muscles.
-
Обзор по тематике клеточных автоматов на базе современных отечественных публикаций
Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 9-57Проведен анализ отечественных публикаций за 2013–2017 гг. включительно, посвященных клеточным автоматам (КА). Большая их часть связана с математическим моделированием. Наукометрическими графиками за 1990–2017 гг. доказана актуальность тематики. Обзор позволяет выделить персоналии и научные направления/школы в современной российской науке, выявить их оригинальность или вторичность по сравнению с мировым уровнем. За счет выбора национальной, а не мировой, базы публикаций обзор претендует на полноту (из 526 просмотренных ссылок научным значением обладают около 200).
В приложении к обзору даются первичные сведения о КА — игра «Жизнь», теорема о садах Эдема, элементарные КА (вместе с диаграммой де Брюина), блочные КА Марголуса, КА с альтернацией. Причем акцентируется внимание на трех важных для моделирования семантиках КА — традициях фон Неймана, Цузе и Цетлина, а также показывается родство с концепциями нейронных сетей и сетей Петри. Выделены условные 10 работ по КА, с которыми должен быть знаком любой специалист по КА. Некоторые важные работы 1990-х гг. и более поздние перечислены во введении.
Затем весь массив публикаций разбит на рубрики: «Модификации КА и другие сетевые модели» (29 %), «Математические свойства КА и связь с математикой» (5 %), «Аппаратные реализации» (3 %), «Программные реализации» (5 %), «Обработка данных, распознавание и криптография» (8 %), «Механика, физика и химия» (20 %), «Биология, экология и медицина» (15 %), «Экономика, урбанистика и социология» (15 %). В скобках указана доля тематики в массиве. Отмечается рост публикаций по КА в гуманитарной сфере, а также появление гибридных подходов, уводящих в сторону от классических КА.
Ключевые слова: клеточные автоматы, наукометрия, параллельные вычисления, распределенные системы, математическое моделирование.
Cellular automata review based on modern domestic publications
Computer Research and Modeling, 2019, v. 11, no. 1, pp. 9-57Просмотров за год: 58.The paper contains the analysis of the domestic publications issued in 2013–2017 years and devoted to cellular automata. The most of them concern on mathematical modeling. Scientometric schedules for 1990–2017 years have proved relevance of subject. The review allows to allocate the main personalities and the scientific directions/schools in modern Russian science, to reveal their originality or secondness in comparison with world science. Due to the authors choice of national publications basis instead of world, the paper claims the completeness and the fact is that about 200 items from the checked 526 references have an importance for science.
In the Annex to the review provides preliminary information about CA — the Game of Life, a theorem about gardens of Eden, elementary CAs (together with the diagram of de Brujin), block Margolus’s CAs, alternating CAs. Attention is paid to three important for modeling semantic traditions of von Neumann, Zuse and Zetlin, as well as to the relationship with the concepts of neural networks and Petri nets. It is allocated conditional 10 works, which should be familiar to any specialist in CA. Some important works of the 1990s and later are listed in the Introduction.
Then the crowd of publications is divided into categories: the modification of the CA and other network models (29 %), Mathematical properties of the CA and the connection with mathematics (5 %), Hardware implementation (3 %), Software implementation (5 %), Data Processing, recognition and Cryptography (8 %), Mechanics, physics and chemistry (20 %), Biology, ecology and medicine (15 %), Economics, urban studies and sociology (15 %). In parentheses the share of subjects in the array are indicated. There is an increase in publications on CA in the humanitarian sphere, as well as the emergence of hybrid approaches, leading away from the classic CA definition.
-
Моделирование пространственного сценария перехода к хаосу через разрушение тора в задаче с концентрационно-зависимой диффузией
Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 9-31Универсальные сценарии перехода к хаосу в динамических системах к настоящему моменту хорошо изучены. К типичным сценариям относятся каскад бифуркаций удвоения периода (сценарий Фейген-баума), разрушение тора малой размерности (сценарий Рюэля–Такенса) и переход через перемежаемость (сценарий Помо–Манневилля). В более сложных пространственно-распределенных динамических системах нарастающая с изменением параметра сложность поведения по времени тесно переплетается с формированием пространственных структур. Однако вопрос о том, могут ли в каком-то сценарии пространственная и временная оси полностью поменяться ролями, до сих пор остается открытым. В данной работе впервые предлагается математическая модель конвекции–реакции–диффузии, в рамках которой реализуется пространственный аналог перехода к хаосу через разрушение квазипериодического режима в рамках сценария Рюэля–Такенса. Исследуемая физическая система представляет собой два водных раствора кислоты (A) и основания (B), в начальный момент времени разделенных по пространству и помещенных в вертикальную ячейку Хеле–Шоу, находящуюся в статическом поле тяжести. При приведении растворов в контакт начинается фронтальная реакция нейтрализации второго порядка: A + B $\to$ C, которая сопровождается выделением соли (С). Процесс характеризуется сильной зависимостью коэффициентов диффузии реагентов от их концентрации, что приводит к возникновению двух локальных зон пониженной плотности, в которых независимо друг от друга возникают хемоконвективные движения жидкости. Слои, в которых развивается конвекция, все время остаются разделенными прослойкой неподвижной жидкости, но они могут влиять друг на друга посредством диффузии реагентов через прослойку. Формирующаяся хемо-конвективная структура представляет собой модулированную стоячую волну, постепенно разрушающуюся со временем, повторяя последовательность бифуркаций сценария разрушения двумерного тора. Показано, что в ходе эволюции системы пространственная ось, направленная вдоль фронта реакции, выполняет роль времени, а само время играет роль управляющего параметра.
Ключевые слова: пространственный аналог сценария перехода к хаосу, разрушение тора, хемокон-векция, реакция нейтрализации, нелинейная диффузия, смешивающиеся жидкости.
Modeling the spatial scenario of the transition to chaos via torus breakup in the problem with concentration-dependent diffusion
Computer Research and Modeling, 2020, v. 12, no. 1, pp. 9-31In the last decades, universal scenarios of the transition to chaos in dynamic systems have been well studied. The scenario of the transition to chaos is defined as a sequence of bifurcations that occur in the system under the variation one of the governing parameters and lead to a qualitative change in dynamics, starting from the regular mode and ending with chaotic behavior. Typical scenarios include a cascade of period doubling bifurcations (Feigenbaum scenario), the breakup of a low-dimensional torus (Ruelle–Takens scenario), and the transition to chaos through the intermittency (Pomeau–Manneville scenario). In more complicated spatially distributed dynamic systems, the complexity of dynamic behavior growing with a parameter change is closely intertwined with the formation of spatial structures. However, the question of whether the spatial and temporal axes could completely exchange roles in some scenario still remains open. In this paper, for the first time, we propose a mathematical model of convection–diffusion–reaction, in which a spatial transition to chaos through the breakup of the quasi–periodic regime is realized in the framework of the Ruelle–Takens scenario. The physical system under consideration consists of two aqueous solutions of acid (A) and base (B), initially separated in space and placed in a vertically oriented Hele–Shaw cell subject to the gravity field. When the solutions are brought into contact, the frontal neutralization reaction of the second order A + B $\to$ C begins, which is accompanied by the production of salt (C). The process is characterized by a strong dependence of the diffusion coefficients of the reagents on their concentration, which leads to the appearance of two local zones of reduced density, in which chemoconvective fluid motions develop independently. Although the layers, in which convection develops, all the time remain separated by the interlayer of motionless fluid, they can influence each other via a diffusion of reagents through this interlayer. The emerging chemoconvective structure is the modulated standing wave that gradually breaks down over time, repeating the sequence of the bifurcation chain of the Ruelle–Takens scenario. We show that during the evolution of the system one of the spatial axes, directed along the reaction front, plays the role of time, and time itself starts to play the role of a control parameter.
-
Памяти Алексея Владимировича Борисова
Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 9-1424 января ушел из жизни блестящий ученый, доктор физико-математических наук, профессор, лауреат премии имени С. В. Ковалевской Алексей Владимирович Борисов. Алексей Владимирович родился и вырос в Москве. Окончив среднюю школу, он поступил на факультет специального машиностроения МВТУ им. Н.Э. Баумана. Уже во время учебы Алексей Владимирович посещает научный семинар на механико-математическом факультете Московского государственного университета им. М.В. Ломносова, что во многом определяет направление его будущих исследований. После защиты кандидатской диссертации Алексей Владимирович создает в Ижевске научную группу, его последующая научная биография очень широка: Екатеринбург, Чебоксары, Иннополис, Долгопрудный, Москва. Борисов основывает и воз- главляет серию научных журналов: «Регулярная и хаотическая динамика», «Нелинейная динамика»; является главным редактором в журналах «Вестник Удмуртского университета», «Компьютерные исследования и моделирование». Научное наследие А. В. Борисова обширно, список публикаций составляет более 200 работ, более 170 из которых опубликованы в журналах, индексируемых международными базами Scopus и Web of Science. Его перу принадлежит более 10 монографий.
In memory of Alexey Vladimirovich Borisov 1965–2021
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 9-14On January 24, a famous scientist, doctor of physical and mathematical sciences, professor and laureate of the Prize of S.V. Kowalevsky Alexey Vladimirovich Borisov passed away. Alexey Vladimirovich was born and raised in Moscow. After graduating from high school, he entered the Faculty of Special Mechanical Engineering of the Bauman Moscow State Technical University. Already during his studies, Alexey Vladimirovich attends a scientific seminar at the Faculty of Mechanics and Mathematics of the Lomnosov Moscow State University, which largely determines the direction of his future research. After defending his Ph.D. thesis, Alexey Vladimirovich creates a scientific group in Izhevsk, his subsequent scientific biography is very wide: Yekaterinburg, Cheboksary, Innopolis, Dolgoprudny, Moscow. Borisov founds and heads the series of scientific journals Regular and Chaotic Dynamics, Nonlinear Dynamics, is the editor-in-chief in the journals Bulletin of Udmurt University, Computer research and modeling. The scientific heritage of A.V. Borisov is extensive, the list of publications is more than 200 works, more than 170 of which have been published in journals indexed by international databases Scopus and Web of Science. More than 10 monographs belong to him.
-
Стационарные состояния и бифуркации в одномерной активной среде осцилляторов
Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 491-512В предлагаемой статье приводятся результаты аналитического и компьютерного исследования коллективных динамических свойств цепочки автоколебательных систем (условно — осцилляторов). Предполагается, что связи отдельных элементов цепочки являются невзаимными, однонаправленными. Точнее, предполагается, что каждый элемент цепочки находится под воздействием предыдущего, в то время как обратная реакция отсутствует (физически несущественна). В этом состоит главная особенность цепочки. Данную систему можно интерпретировать как активную дискретную среду с однонаправленным переносом, в частности переносом вещества. Подобные цепочки могут являться математическими моделями реальных систем с решеточной структурой, имеющих место в самых различных областях естествознания и техники: в физике, химии, биологии, радиотехнике, экономике и др. Также они могут быть моделями технологических и вычислительных процессов. В качестве элементов решетки выбраны нелинейные автоколебательные системы (условно — осцилляторы) с широким спектром потенциально возможных индивидуальных автоколебаний: от периодических до хаотических. Это позволяет исследовать различные динамические режимы цепочки от регулярных до хаотических, меняя параметры элементов и не меняя природу самих элементов. Совместное применение качественных методов теории динамических систем и качественно-численных методов позволяет получить обозримую картину всевозможных динамических режимов цепочки. Исследуются условия существования и устойчивости пространственно однородных динамических режимов (детерминированных и хаотических) цепочки. Аналитические результаты иллюстрированы численным экспериментом. Исследуются динамические режимы цепочки при возмущениях параметров на ее границе. Показывается возможность управления динамическими режимами цепочки путем включения необходимого возмущения на границе. Рассматриваются различные случаи динамики цепочек, составленных из неоднородных (различных по своим параметрам) элементов. Аналитически и численно исследуется глобальная (всех осцилляторов цепочки) хаотическая синхронизация.
Ключевые слова: динамическая система, решетка, бифуркации, осциллятор, фазовое пространство, динамический хаос, синхронизация.
Stationary states and bifurcations in a one-dimensional active medium of oscillators
Computer Research and Modeling, 2023, v. 15, no. 3, pp. 491-512This article presents the results of an analytical and computer study of the collective dynamic properties of a chain of self-oscillating systems (conditionally — oscillators). It is assumed that the couplings of individual elements of the chain are non-reciprocal, unidirectional. More precisely, it is assumed that each element of the chain is under the influence of the previous one, while the reverse reaction is absent (physically insignificant). This is the main feature of the chain. This system can be interpreted as an active discrete medium with unidirectional transfer, in particular, the transfer of a matter. Such chains can represent mathematical models of real systems having a lattice structure that occur in various fields of natural science and technology: physics, chemistry, biology, radio engineering, economics, etc. They can also represent models of technological and computational processes. Nonlinear self-oscillating systems (conditionally, oscillators) with a wide “spectrum” of potentially possible individual self-oscillations, from periodic to chaotic, were chosen as the “elements” of the lattice. This allows one to explore various dynamic modes of the chain from regular to chaotic, changing the parameters of the elements and not changing the nature of the elements themselves. The joint application of qualitative methods of the theory of dynamical systems and qualitative-numerical methods allows one to obtain a clear picture of all possible dynamic regimes of the chain. The conditions for the existence and stability of spatially-homogeneous dynamic regimes (deterministic and chaotic) of the chain are studied. The analytical results are illustrated by a numerical experiment. The dynamical regimes of the chain are studied under perturbations of parameters at its boundary. The possibility of controlling the dynamic regimes of the chain by turning on the necessary perturbation at the boundary is shown. Various cases of the dynamics of chains comprised of inhomogeneous (different in their parameters) elements are considered. The global chaotic synchronization (of all oscillators in the chain) is studied analytically and numerically.
Keywords: dynamical system, lattice, bifurcations, oscillator, phase space, dynamical chaos, synchronization. -
Синтез структуры организованных систем как центральная проблема эволюционной кибернетики
Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1103-1124В статье рассматриваются подходы к эволюционному моделированию синтеза организованных систем и анализируются методологические проблемы эволюционных вычислений этого направления. На основе анализа работ по эволюционной кибернетике, теории эволюции, теории систем и синергетике сделан вывод о наличии открытых проблем в задачах формализации синтеза организованных систем и моделирования их эволюции. Показано, что теоретической основой для практики эволюционного моделирования являются положения синтетической теории эволюции. Рассмотрено использование виртуальной вычислительной среды для машинного синтеза алгоритмов решения задач. На основе полученных в процессе моделирования результатов сделан вывод о наличии ряда условий, принципиально ограничивающих применимость методов генетического программирования в задачах синтеза функциональных структур. К основным ограничениям относятся необходимость для фитнес-функции отслеживать поэтапное приближение к решению задачи и неприменимость данного подхода к задачам синтеза иерархически организованных систем. Отмечено, что результаты, полученные в практике эволюционного моделирования в целом за все время его существования, подтверждают вывод о принципиальной ограниченности возможностей генетического программирования при решении задач синтеза структуры организованных систем. В качестве источников принципиальных трудностей для машинного синтеза системных структур указаны отсутствие направлений для градиентного спуска при структурном синтезе и отсутствие закономерности случайного появления новых организованных структур. Сделан вывод об актуальности рассматриваемых проблем для теории биологической эволюции. Обосновано положение о биологической специфике практически возможных путей синтеза структуры организованных систем. В качестве теоретической интерпретации обсуждаемой проблемы предложено рассматривать системно-эволюционную концепцию П.К. Анохина. Процесс синтеза функциональных структур рассматривается в этом контексте как адаптивная реакция организмов на внешние условия, основанная на их способности к интегративному синтезу памяти, потребностей и информации о текущих условиях. Приведены результаты актуальных исследований, свидетельствующие в пользу данной интерпретации. Отмечено, что физические основы биологической интегративности могут быть связаны с явлениями нелокальности и несепарабельности, характерными для квантовых систем. Отмечена связь рассматриваемой в данной работе проблематики с проблемой создания сильного искусственного интеллекта.
Ключевые слова: эволюционное моделирование, кибернетика, теория систем, теория эволюции, генетические алгоритмы, искусственный интеллект.
Synthesis of the structure of organised systems as central problem of evolutionary cybernetics
Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1103-1124The article provides approaches to evolutionary modelling of synthesis of organised systems and analyses methodological problems of evolutionary computations of this kind. Based on the analysis of works on evolutionary cybernetics, evolutionary theory, systems theory and synergetics, we conclude that there are open problems in formalising the synthesis of organised systems and modelling their evolution. The article emphasises that the theoretical basis for the practice of evolutionary modelling is the principles of the modern synthetic theory of evolution. Our software project uses a virtual computing environment for machine synthesis of problem solving algorithms. In the process of modelling, we obtained the results on the basis of which we conclude that there are a number of conditions that fundamentally limit the applicability of genetic programming methods in the tasks of synthesis of functional structures. The main limitations are the need for the fitness function to track the step-by-step approach to the solution of the problem and the inapplicability of this approach to the problems of synthesis of hierarchically organised systems. We note that the results obtained in the practice of evolutionary modelling in general for the whole time of its existence, confirm the conclusion the possibilities of genetic programming are fundamentally limited in solving problems of synthesizing the structure of organized systems. As sources of fundamental difficulties for machine synthesis of system structures the article points out the absence of directions for gradient descent in structural synthesis and the absence of regularity of random appearance of new organised structures. The considered problems are relevant for the theory of biological evolution. The article substantiates the statement about the biological specificity of practically possible ways of synthesis of the structure of organised systems. As a theoretical interpretation of the discussed problem, we propose to consider the system-evolutionary concept of P.K.Anokhin. The process of synthesis of functional structures in this context is an adaptive response of organisms to external conditions based on their ability to integrative synthesis of memory, needs and information about current conditions. The results of actual studies are in favour of this interpretation. We note that the physical basis of biological integrativity may be related to the phenomena of non-locality and non-separability characteristic of quantum systems. The problems considered in this paper are closely related to the problem of creating strong artificial intelligence.
-
Построение и исследование непрерывной клеточно-автоматной модели процессов теплопроводности с фазовыми переходами первого рода
Компьютерные исследования и моделирование, 2013, т. 5, № 2, с. 141-152В данной статье рассматриваются процессы теплопроводности, сопровождающиеся фазовыми переходами первого рода. При помощи клеточно-автоматного моделирования был исследован класс задач, имеющих широкое применение в практической деятельности. В работе приведены вычисления распределения температуры по глубине почвы в разные моменты времени для задачи промерзания влажного грунта. Другая задача — зонное выращивание — также смоделирована с помощью клеточных автоматов. Совпадение реальных и модельных параметров системы подтверждает целесообразность использования выбранного способа моделирования физических процессов.
Construction and investigation of continuous cellular automatа model of heat conductivity processes with first order phase transitions
Computer Research and Modeling, 2013, v. 5, no. 2, pp. 141-152Просмотров за год: 2. Цитирований: 2 (РИНЦ).The process of heat conduction, accompanied by the first order phase transitions is discussed in this article. Using cellular automates simulation was investigated class of problems that have broad application in practice. In this paper we calculate the temperature distribution in the depth of the soil at different times for a problem of freezing of moist soil. Another task — zone growing — has been modeled by cellular automates too. The coincidence of real and modeling parameters of the system confirms the feasibility of using the selected method of modeling of physical processes.
-
Механизм образования осциллонов — уединенных колебательных структур
Компьютерные исследования и моделирование, 2015, т. 7, № 6, с. 1177-1184Предложен формальный модельный механизм формирования осциллонов, которые были обнаружены во множестве физических систем, а также в химической реакции Белоусова–Жаботинского, протекающей в обращенной масляной микроэмульсии аэрозоля ОТ. В предложенном механизме возникновение осциллонов происходит в результате взаимодействия двух подсистем. В первой подсистеме при подходящем наборе параметров в результате жесткого локального возбуждения возможно образование уединенных стационарных структур, которые определяют пространственное распределение параметра второй подсистемы, изменение которого вызывают в ней локальные осцилляции.
The mechanism of formation of oscillons — localized oscillatory structures
Computer Research and Modeling, 2015, v. 7, no. 6, pp. 1177-1184Просмотров за год: 6. Цитирований: 1 (РИНЦ).A formal model mechanism of oscillon formation is proposed. These structures were found in a variety of physical systems and a chemical Belousov–Jabotinsky reaction proceeding in an aerosol OT water-inoil microemulsion. Via the proposed mechanism oscillons occur as a result of interaction of two subsystems. In the first subsystem for a proper set of parameters solitary stationary structures may arise as a result of hard local excitation. These structures influence spatial distribution of the second subsystem parameter that leads to local oscillations in the subsystem.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"