Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'modeling of DNA dynamics':
Найдено статей: 7
  1. Фиалко Н.С.
    Смешанный алгоритм расчета динамики переноса заряда в ДНК на больших временных интервалах
    Компьютерные исследования и моделирование, 2010, т. 2, № 1, с. 63-72

    Перенос заряда в ДНК моделируется с помощью дискретной модели Холстейна «квантовая частица + классическая цепочка сайтов + взаимодействие». Влияние температуры термостата учитывается с помощью случайной силы, действующей на классические сайты (уравнение Ланжевена). Таким образом, динамика распространения заряда вдоль цепочки описывается системой ОДУ со случайной правой частью. Для интегрирования таких систем обычно применяют алгоритмы 1 или 2 порядка. Мы разработали смешанный алгоритм, имеющий 4 порядок точности по быстрым «квантовым» переменным (заметим, что в «квантовой» подсистеме должно соблюдаться условие: «сумма вероятностей нахождения заряда на сайте постоянна по времени») и 2 порядок по медленным «классическим» переменным, на которые действует случайная сила. Алгоритм позволяет считать на бóльших временах, чем стандартные. В качестве примера приведен модельный расчет развала полярона в однородной цепочке под действием температурных флуктуаций.

    Fialko N.S.
    Mixed algorithm for modeling of charge transfer in DNA on long time intervals
    Computer Research and Modeling, 2010, v. 2, no. 1, pp. 63-72

    Charge transfer in DNA is simulated by a discrete Holstein model «quantum particle + classical site chain + interaction». Thermostat temperature is taken into account as stochastic force, which acts on classical sites (Langevin equation). Thus dynamics of charge migration along the chain is described by ODE system with stochastic right-hand side. To integrate the system numerically, algorithms of order 1 or 2 are usually applied. We developed «mixed» algorithm having 4th order of accuracy for fast «quantum» variables (note that in quantum subsystem the condition «sum of probabilities of charge being on site is time-constant» must be held), and 2nd order for slow classical variables, which are affecting by stochastic force. The algorithm allows us to calculate trajectories on longer time intervals as compared to standard algorithms. Model calculations of polaron disruption in homogeneous chain caused by temperature fluctuations are given as an example.

    Просмотров за год: 2. Цитирований: 2 (РИНЦ).
  2. Брацун Д.А., Лоргов Е.С., Полуянов А.О.
    Репрессилятор с запаздывающей экспрессией генов. Часть I. Детерминистское описание
    Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 241-259

    Репрессилятором называют первую в синтетической биологии генную регуляторную сеть, искусственно сконструированную в 2000 году. Он представляет собой замкнутую цепь из трех генетических элементов — $lacI$, $\lambda cI$ и $tetR$, — которые имеют естественное происхождение, но в такой комбинации в природе не встречаются. Промотор каждого гена контролирует следующий за ним цистрон по принципу отрицательной обратной связи, подавляя экспрессию соседнего гена. В данной работе впервые рассматривается нелинейная динамика модифицированного репрессилятора, у которого имеются запаздывания по времени во всех звеньях регуляторной цепи. Запаздывание может быть как естественным, т. е. возникать во время транскрипции/трансляции генов в силу многоступенчатого характера этих процессов, так и искусственным, т. е. специально вноситься в работу регуляторной сети с помощью методов синтетической биологии. Предполагается, что регуляция осуществляется протеинами в димерной форме. Рассмотренный репрессилятор имеет еще две важные модификации: расположение на той же плазмиде гена $gfp$, кодирующего флуоресцентный белок, а также наличие в системе накопителя для белка, кодируемого геном $tetR$. В рамках детерминистского описания методом разложения на быстрые и медленные движения получена система нелинейных дифференциальных уравнений с запаздыванием на медленном многообразии. Показано, что при определенных значениях управляющих параметров единственное состояние равновесия теряет устойчивость колебательным образом. Для симметричного репрессилятора, у которого все три гена идентичны, получено аналитическое решение для нейтральной кривой бифуркации Андронова–Хопфа. Для общего случая асимметричного репрессилятора нейтральные кривые построены численно. Показано, что асимметричный репрессилятор является более устойчивым, так как система ориентируется на поведение наиболее стабильного элемента в цепи. Изучены нелинейные динамические режимы, возникающие в репрессиляторе при увеличении надкритических значений управляющих параметров. Кроме предельного цикла, отвечающего поочередным релаксационным пульсациям белковых концентраций элементов, в системе обнаружено существование медленного многообразия, не связанного с этим циклом. Долгоживущий переходный режим, который отвечает многообразию, отражает процесс длительной синхронизации пульсаций в работе отдельных генов. Производится сравнение полученных результатов с известными из литературы экспериментальными данными. Обсуждается место предложенной в работе модели среди других теоретических моделей репрессилятора.

    Bratsun D.A., Lorgov E.S., Poluyanov A.O.
    Repressilator with time-delayed gene expression. Part I. Deterministic description
    Computer Research and Modeling, 2018, v. 10, no. 2, pp. 241-259

    The repressor is the first genetic regulatory network in synthetic biology, which was artificially constructed in 2000. It is a closed network of three genetic elements — $lacI$, $\lambda cI$ and $tetR$, — which have a natural origin, but are not found in nature in such a combination. The promoter of each of the three genes controls the next cistron via the negative feedback, suppressing the expression of the neighboring gene. In this paper, the nonlinear dynamics of a modified repressilator, which has time delays in all parts of the regulatory network, has been studied for the first time. Delay can be both natural, i.e. arises during the transcription/translation of genes due to the multistage nature of these processes, and artificial, i.e. specially to be introduced into the work of the regulatory network using synthetic biology technologies. It is assumed that the regulation is carried out by proteins being in a dimeric form. The considered repressilator has two more important modifications: the location on the same plasmid of the gene $gfp$, which codes for the fluorescent protein, and also the presence in the system of a DNA sponge. In the paper, the nonlinear dynamics has been considered within the framework of the deterministic description. By applying the method of decomposition into fast and slow motions, the set of nonlinear differential equations with delay on a slow manifold has been obtained. It is shown that there exists a single equilibrium state which loses its stability in an oscillatory manner at certain values of the control parameters. For a symmetric repressilator, in which all three genes are identical, an analytical solution for the neutral Andronov–Hopf bifurcation curve has been obtained. For the general case of an asymmetric repressilator, neutral curves are found numerically. It is shown that the asymmetric repressor generally is more stable, since the system is oriented to the behavior of the most stable element in the network. Nonlinear dynamic regimes arising in a repressilator with increase of the parameters are studied in detail. It was found that there exists a limit cycle corresponding to relaxation oscillations of protein concentrations. In addition to the limit cycle, we found the slow manifold not associated with above cycle. This is the long-lived transitional regime, which reflects the process of long-term synchronization of pulsations in the work of individual genes. The obtained results are compared with the experimental data known from the literature. The place of the model proposed in the present work among other theoretical models of the repressilator is discussed.

    Просмотров за год: 30.
  3. Якушевич Л.В.
    Электронный аналог однородной ДНК
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 789-798

    Известно, что внутренняя подвижность молекул ДНК играет важную роль в функционировании этих молекул. Этим объясняется большой интерес исследователей к изучению особенностей внутренней динамики ДНК. Сложность, трудоемкость и дороговизна проведения исследований в этой области стимулируют поиск и создание более простых физических аналогов, удобных для имитации различных динамических режимов, возможных в ДНК. Одно из направлений такого поиска связано с использованием механического аналога ДНК — цепочки связанных маятников. В этой модели маятники имитируют азотистые основания, горизонтальная нить, на которой подвешены маятники, имитирует сахаро-фосфатную цепочку, а гравитационное поле имитирует поле, наводимое второй нитью ДНК. Простота и наглядность — основные достоинства механического аналога. Однако модель становится слишком громоздкой в тех случаях, когда необходимо моделировать длинные (более тысячи пар оснований) последовательности ДНК. Другое направление связано с использованием электронного аналога молекулы ДНК, который лишен недостатков механической модели. В данной работе мы исследуем возможность использования в качестве электронного аналога джозефсоновскую линию. Мы рассчитали коэффициенты прямых и непрямых преобразований для простого случая однородной, синтетической ДНК, последовательность которой содержит только аденины. Внутренняя подвижности молекулы ДНК моделировалась уравнением синус-Гордона для угловых колебаний азотистых оснований, принадлежащих одной из двух полинуклеотидных цепей ДНК. При этом вторая полинуклеотидная цепь моделировалась как некоторое усредненное поле, в котором происходят эти колебания. Преобразование, позволяющее перейти от ДНК к электронному аналогу, было получено двумя способами. Первый включает две стадии: (1) переход от ДНК к механическому аналогу (цепочке связанных маятников) и (2) переход от механического аналога к электронному (линии Джозефсона). Второй способ прямой. Он включает только одну стадию — прямой переход от ДНК к электронному аналогу.

    Yakushevich L.V.
    Electronic analogue of DNA
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 789-798

    It is known that the internal mobility of DNA molecules plays an important role in the functioning of these molecules. This explains the great interest of researchers in studying the internal dynamics of DNA. Complexity, laboriousness and high cost of research in this field stimulate the search and creation of simpler physical analogues, convenient for simulating the various dynamic regimes possible in DNA. One of the directions of such a search is connected with the use of a mechanical analogue of DNA — a chain of coupled pendulums. In this model, pendulums imitate nitrous bases, horizontal thread on which pendulums are suspended, simulates a sugarphosphate chain, and gravitational field simulates a field induced by a second strand of DNA. Simplicity and visibility are the main advantages of the mechanical analogue. However, the model becomes too cumbersome in cases where it is necessary to simulate long (more than a thousand base pairs) DNA sequences. Another direction is associated with the use of an electronic analogue of the DNA molecule, which has no shortcomings of the mechanical model. In this paper, we investigate the possibility of using the Josephson line as an electronic analogue. We calculated the coefficients of the direct and indirect transformations for the simple case of a homogeneous, synthetic DNA, the sequence of which contains only adenines. The internal mobility of the DNA molecule was modeled by the sine-Gordon equation for angular vibrations of nitrous bases belonging to one of the two polynucleotide chains of DNA. The second polynucleotide chain was modeled as a certain average field in which these oscillations occur. We obtained the transformation, allowing the transition from DNA to an electronic analog in two ways. The first includes two stages: (1) the transition from DNA to the mechanical analogue (a chain of coupled pendulums) and (2) the transition from the mechanical analogue to the electronic one (the Josephson line). The second way is direct. It includes only one stage — a direct transition from DNA to the electronic analogue.

    Просмотров за год: 9.
  4. Гриневич А.А., Якушевич Л.В.
    О компьютерных экспериментах Касмана
    Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 503-513

    В 2007 году Касман провел серию оригинальных компьютерных экспериментов с кинками уравнения синус-Гордона, движущимися вдоль искусственных последовательностей ДНК. Были рассмотрены две последовательности. Каждая состояла из двух частей, разделенных границей. Левая часть первой из последовательностей содержала повторяющиеся триплеты TTA, кодирующие лейцины, а правая часть содержала повторяющиеся триплеты CGC, кодирующие аргинины. Во второй последовательности левая часть содержала повторяющиеся триплеты CTG, кодирующие лейцины, а правая часть содержала повторяющиеся триплеты AGA, кодирующие аргинины. При моделировании движения кинка в этих последовательностях был обнаружен интересный эффект. Оказалось, что кинк, движущийся в одной из последовательностей, останавливался, не достигнув конца, а затем «отскакивал», как будто ударялся об стенку. В то же время в другой последовательности движение кинка не прекращалось в течение всего времени проведения эксперимента. В этих компьютерных экспериментах, однако, использовалась простая модель ДНК, предложенная Салерно. Она учитывает различия во взаимодействиях комплементарных оснований внутри пар, но пренебрегает различием в моментах инерции азотистых оснований и расстояниях между центрами масс оснований и сахарно-фосфатной цепочкой. Вопрос о том, сохранится ли эффект Касмана при использовании более точных моделей ДНК, до сих пор остается открытым. В настоящей работе мы исследуем эффект Касмана на основе более точной модели ДНК, которая учитывает оба эти различия. Мы получили энергетические профили последовательностей Касмана и построили траектории движения кинков, запущенных в этих последовательностях при разных начальных значениях энергии. Результаты наших исследований подтвердили существование эффекта Касмана, но только в ограниченном интервале начальных значений энергии кинков и при определенном направлении движения кинков. В других случаях этот эффект не наблюдался. Мы обсудили, какие из исследованных последовательностей энергетически были более предпочтительны для возбуждения и распространения кинков.

    Grinevich A.A., Yakushevich L.V.
    On the computer experiments of Kasman
    Computer Research and Modeling, 2019, v. 11, no. 3, pp. 503-513

    In 2007 Kasman conducted a series of original computer experiments with sine-Gordon kinks moving along artificial DNA sequences. Two sequences were considered. Each consisted of two parts separated by a boundary. The left part of the first sequence contained repeating TTA triplets that encode leucines, and the right part contained repeating CGC triplets that encode arginines. In the second sequence, the left part contained repeating CTG triplets encoding leucines, and the right part contained repeating AGA triplets encoding arginines. When modeling the kink movement, an interesting effect was discovered. It turned out that the kink, moving in one of the sequences, stopped without reaching the end of the sequence, and then “bounced off” as if he had hit a wall. At the same time, the kink movement in the other sequence did not stop during the entire time of the experiment. In these computer experiments, however, a simple DNA model proposed by Salerno was used. It takes into account differences in the interactions of complementary bases within pairs, but does not take into account differences in the moments of inertia of nitrogenous bases and in the distances between the centers of mass of the bases and the sugar-phosphate chain. The question of whether the Kasman effect will continue with the use of more accurate DNA models is still open. In this paper, we investigate the Kasman effect on the basis of a more accurate DNA model that takes both of these differences into account. We obtained the energy profiles of Kasman's sequences and constructed the trajectories of the motion of kinks launched in these sequences with different initial values of the energy. The results of our investigations confirmed the existence of the Kasman effect, but only in a limited interval of initial values of the kink energy and with a certain direction of the kinks movement. In other cases, this effect did not observe. We discussed which of the studied sequences were energetically preferable for the excitation and propagation of kinks.

    Просмотров за год: 23.
  5. Якушевич Л.В.
    От однородного к неоднородному электронному аналогу ДНК
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1397-1407

    В данной работе с помощью методов математического моделирования решается задача о построении электронного аналога неоднородной ДНК. Такие электронные аналоги, наряду с другими физическими моделями живых систем, широко используются в качестве инструмента для изучения динамических и функциональных свойств этих систем. Решение задачи строится на основе алгоритма, разработанного ранее для однородной (синтетической) ДНК и модифицированного таким образом, чтобы его можно было использовать для случая неоднородной (природной) ДНК. Этот алгоритм включает следующие шаги: выбор модели, имитирующей внутреннюю подвижность ДНК; построение преобразования, позволяющего перейти от модели ДНК к ее электронному аналогу; поиск условий, обеспечивающих аналогию уравнений ДНК и уравнений электронного аналога; расчет параметров эквивалентной электрической цепи. Для описания неоднородной ДНК была выбрана модель, представляющая собой систему дискретных нелинейных дифференциальных уравнений, имитирующих угловые отклонения азотистых оснований, и соответствующий этим уравнениям гамильтониан. Значения коэффициентов в модельных уравнениях полностью определяются динамическими параметрами молекулы ДНК, включая моменты инерции азотистых оснований, жесткость сахаро-фосфатной цепи, константы, характеризующие взаимодействия между комплементарными основаниями внутри пар. В качестве основы для построения электронной модели была использована неоднородная линия Джозефсона, эквивалентная схема которой содержит четыре типа ячеек: A-, T-, G- и C-ячейки. Каждая ячейка, в свою очередь, состоит из трех элементов: емкости, индуктивности и джозефсоновского контакта. Важно, чтобы A-, T-, G- и C-ячейки джозефсоновской линии располагались в определенном порядке, который аналогичен порядку расположения азотистых оснований (A, T, G и C) в последовательности ДНК. Переход от ДНК к электронному аналогу осуществлялся с помощью А-преобразования, что позволило рассчитать значения емкости, индуктивности и джозефсоновского контакта в A-ячейках. Значения параметров для T-, G- и C-ячеек эквивалентной электрической цепи были получены из условий, накладываемых на коэффициенты модельных уравнений и обеспечивающих аналогию между ДНК и электронной моделью.

    Yakushevich L.V.
    From homogeneous to inhomogeneous electronic analogue of DNA
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1397-1407

    In this work, the problem of constructing an electronic analogue of heterogeneous DNA is solved with the help of the methods of mathematical modeling. Electronic analogs of that type, along with other physical models of living systems, are widely used as a tool for studying the dynamic and functional properties of these systems. The solution to the problem is based on an algorithm previously developed for homogeneous (synthetic) DNA and modified in such a way that it can be used for the case of inhomogeneous (native) DNA. The algorithm includes the following steps: selection of a model that simulates the internal mobility of DNA; construction of a transformation that allows you to move from the DNA model to its electronic analogue; search for conditions that provide an analogy of DNA equations and electronic analogue equations; calculation of the parameters of the equivalent electrical circuit. To describe inhomogeneous DNA, the model was chosen that is a system of discrete nonlinear differential equations simulating the angular deviations of nitrogenous bases, and Hamiltonian corresponding to these equations. The values of the coefficients in the model equations are completely determined by the dynamic parameters of the DNA molecule, including the moments of inertia of nitrous bases, the rigidity of the sugar-phosphate chain, and the constants characterizing the interactions between complementary bases in pairs. The inhomogeneous Josephson line was used as a basis for constructing an electronic model, the equivalent circuit of which contains four types of cells: A-, T-, G-, and C-cells. Each cell, in turn, consists of three elements: capacitance, inductance, and Josephson junction. It is important that the A-, T-, G- and C-cells of the Josephson line are arranged in a specific order, which is similar to the order of the nitrogenous bases (A, T, G and C) in the DNA sequence. The transition from DNA to an electronic analog was carried out with the help of the A-transformation which made it possible to calculate the values of the capacitance, inductance, and Josephson junction in the A-cells. The parameter values for the T-, G-, and C-cells of the equivalent electrical circuit were obtained from the conditions imposed on the coefficients of the model equations and providing an analogy between DNA and the electronic model.

  6. Гриневич А.А., Рясик А.А., Якушевич Л.В.
    Динамические свойства полинуклеотидной цепи, состоящей из двух неодинаковых однородных последовательностей, разделенных границей
    Компьютерные исследования и моделирование, 2013, т. 5, № 2, с. 241-253

    Для исследования динамики неоднородной полинуклеотидной цепочки ДНК была использована упрощенная Y-модель с нулевым диссипативным членом. На основе этой модели с помощью численных методов были проведены расчеты, демонстрирующие поведение нелинейного конформационного возмущения (кинка), распространяющегося вдоль неоднородной полинуклеотидной цепи, состоящей из двух разных однородных последовательностей нуклеотидов. Как показал численный анализ, нелинейное возмущение в виде кинка, распространяющееся вдоль рассматриваемой модельной молекулы ДНК, может вести себя тремя разными способами. При достижении границы между двумя однородными последовательностями, состоящими из разных типов оснований, кинк может: а) отразиться, б) пройти границу с ускорением (увеличить скорость), в) пройти границу с замедлением (уменьшить скорость).

    Grinevich A.A., Ryasik A.A., Yakushevich L.V.
    The dynamics of polynucleotide chain consisting of two different homogeneous sequences, divided by interface
    Computer Research and Modeling, 2013, v. 5, no. 2, pp. 241-253

    To research dynamics of inhomogeneous polynucleotide DNA chain the Y-model with no dissipation term was used. Basing on this model using numerical methods calculations were carried out, which have shown the behaviour of nonlinear conformational excitation (kink), spreading along the inhomogeneous polynucleotide chain, consisting of two different homogeneous nucleotide sequences. As numerical analysis shows there are three ways of behaviour of the nonlinear kink excitation spreading along the DNA chain. After reaching the interface between two homogeneous sequences consisting of different types of bases kink can a) reflect, b) pass the interface with acceleration (increase its velocity), c) pass the interface with deceleration (decrease its velocity).

    Просмотров за год: 1. Цитирований: 3 (РИНЦ).
  7. Якушевич Л.В., Рясик А.А.
    Динамические характеристики кинков и антикинков ДНК
    Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 209-217

    В данной работе в рамках модели синус-Гордона рассчитываются динамические характеристики кинков и антикинков, активированных в однородных полинуклеотидных цепочках, каждая из которых содержит только один из видов оснований: аденины, тимины, гуанины или цитозины. Получены аналитические формулы и построены графики для профилей кинков и антикинков и для плотности их энергии в 2D- и 3D-формате. Вычислены масса кинков и антикинков, их энергия покоя и размеры. Рассчитаны траектории движения кинков и антикинков в фазовом пространстве в 2D- и 3D-формате.

    Yakushevich L.V., Ryasik A.A.
    Dynamical characteristics of DNA kinks and antikinks
    Computer Research and Modeling, 2012, v. 4, no. 1, pp. 209-217

    In this article in the frameworks of the sine-Gordon mode we have calculated the dynamical characteristics of kinks and antikinks activated in the homogeneous polynucleotide chains each if them contains only one of the types of the bases: adenines, thymines, guanines or cytosines. We have obtained analytical formulas and constructed the graphs for the kink and antikink profiles and for their energy density in the 2D- and 3D-dimension. Mass of kinks and antikinks, their energy of rest and their size have been estimated. The trajectories of kink and antikink motion in the phase space have been calculated in the 2D- and 3D-dimension.

    Просмотров за год: 2. Цитирований: 7 (РИНЦ).

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.