Текущий выпуск Номер 4, 2024 Том 16

Все выпуски

Результаты поиска по 'солитоны':
Найдено статей: 18
  1. От редакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 673-675
    Просмотров за год: 1.
  2. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 485-489
  3. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 245-248
  4. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 821-823
  5. Черняев А.П., Черняева С.А.
    Особенности численных решений некоторых задач для кноидальной волны как периодического решения уравнения Кортевега – де Фриза
    Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 885-901

    В данной статье рассмотрены особенности численных решений некоторых задач для кноидальных волн, которые являются периодическими решениями классического уравнения Кортевега – де Фриза типа бегущей волны. Точные решения, описывающие эти волны, получены путемс ведения автоволновым приближением уравнения Кортевега – де Фриза к обыкновенным дифференциальным уравнениям сначала третьего, затем второго и, наконец, первого порядков. Обращение к числовому примеру показывает, что полученные такимо бразом обыкновенные дифференциальные уравнения не являются равносильными. Сформулированная и доказанная в настоящей статье теорема и замечание к ней показывают, что множество решений уравнения третьего порядка самое широкое и в качестве подмножеств включает в себя множества решений уравнений первого и второго порядков, которые в свою очередь равносильными не являются. Полученное автоволновым приближением обыкновенное дифференциальное уравнение первого порядка является источником для нахождения точных формул для описания кноидальной волны (периодического решения) и солитона (уединенной волны). Несмотря на это, с вычислительной точки зрения это уравнение является самым неудобным. Для этого уравнения не выполняется условие Липшица по искомой функции в окрестности постоянных решений. Отсюда теорема о существовании и единственности решения задачи Коши для обыкновенного дифференциального уравнения первого порядка не является справедливой. В частности, в стационарных точках нарушается единственность решения задачи Коши. Поэтому для обыкновенного дифференциального уравнения первого порядка, полученного из уравнения Кортевега – де Фриза, и в случае кноидальной волны, и в случае солитона задачу Коши нельзя ставить в точках экстремума. Начальное условие может быть поставлено лишь в точке убывания или роста, а отрезок численного решения необходимо выбрать так, чтобы он лежал между соседними точками экстремума. Но для уравнений второго и третьего порядков начальные условия можно ставить как в точках убывания или роста, так и в точках экстремума. При этом отрезок для численного решения сильно расширяется и наблюдается периодичность. Для решений этих обыкновенных уравнений изучаются постановки задач Коши, проводится сравнение полученных результатов с точными решениями и между собой. Показана численная реализация перерождения кноидальной волны в солитон. Результаты статьи имеют гемодинамическую интерпретацию пульсационного течения кровотока в цилиндрическом кровеносном сосуде, состоящем из упругих колец.

  6. Екомасов Е.Г., Гумеров А.М., Муртазин Р.Р.
    О возбуждении солитонов при взаимодействии кинков уравнения синус-Гордона с притягивающей примесью
    Компьютерные исследования и моделирование, 2012, т. 4, № 3, с. 509-520

    Исследованы аналитически и численно структура и свойства локализованных двух- и трех-кинковых решений уравнения синус-Гордона, возбуждаемых в области притягивающей примеси. Рассмотрены случаи одиночной и двойной пространственно протяженной примеси.

    Цитирований: 5 (РИНЦ).
  7. Грачев В.А., Найштут Ю.С.
    Задачи устойчивости тонких упругих оболочек
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 775-787

    В работе рассматриваются различные математические постановки, относящиеся к задаче упругой устойчивости оболочек в связи с обнаруженными в последнее время несоответствиями между экспериментальными данными и предсказаниями, основанными на теории пологих оболочек. Отмечается, что противоречия возникли в связи с появлением новых алгоритмов, позволивших уточнить вычисленные в двадцатом веке так называемые нижние критические напряжения, которые приняты техническими стандартами в качестве критерия глобальной потери устойчивости тонких пологих оболочек. Новые вычисления часто оценивают нижнее критическое напряжение близким к нулю. Следовательно, нижнее критическое напряжение не может приниматься в качестве расчетного значения для анализа потери устойчивости тонкостенной конструкции, а уравнения теории пологих оболочек должны быть заменены другими дифференциальными уравнениями. В новой теории следует также определить критерий потери устойчивости, обеспечивающий совпадение вычислений и экспериментов.

    В работе показано, что в рамках динамической нелинейной трехмерной теории упругости противоречие с новыми экспериментами может быть устранено. В качестве критерия глобальной потери устойчивости следует принять напряжение, при котором имеет место бифуркация динамических мод. Нелинейный характер исходных уравнений порождает уединенные (солитонные) волны, которым соответствуют негладкие перемещения оболочек (патерны, вмятины). Существенно, что влияния солитонов проявляются на всех этапах нагружения и резко возрастают, приближаясь к бифуркации. Солитонные решения иллюстрируются на примере тонкой цилиндрической безмоментной оболочки, трехмерный объем которой моделируется двумерной поверхностью с заданной толщиной. В статье отмечается, что волны, формирующие патерны, могут быть обнаружены (а их амплитуды определены) путем акустических или электромагнитных измерений.

    Таким образом, появляется техническая возможность снизить риск разрушения оболочек, если проводить мониторинг формы поверхности современными акустическими средствами. Статья завершается формулировкой математических проблем, требующих решения для надежной численной оценки критерия потери устойчивости тонких упругих оболочек.

    Просмотров за год: 23.
  8. Самсонов К.Ю., Кабанов Д.К., Назаров В.Н., Екомасов Е.Г.
    Локализованные нелинейные волны уравнения синус-Гордона в модели с тремя протяженными примесями
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 855-868

    В работе с помощью аналитических и численных методов рассматривается задача о структуре и динамике связанных локализованных нелинейных волн в модели синус-Гордона с тремя одинаковыми притягивающими протяженными примесями, которые моделируются пространственной неоднородностью периодического потенциала. Найдены два возможных типа связанных нелинейных локализованных волн — бризерного и солитонного. Проведен анализ влияния параметров системы и начальных условий на структуру локализованных волн, их амплитуду и частоту. Связанные колебания локализованных волн бризерного типа, как и для случая точечных примесей, представляет собой сумму трех гармонических колебаний: синфазного, синфазно-антифазного и антифазного типа. Частотный анализ локализованных на примесях волн, которые были получены в ходе численного эксперимента, выполнялся с помощью дискретного преобразования Фурье. Для анализа локализованных волн бризерного типа применялся численный метод конечных разностей. Для проведения качественно анализа полученных численных результатов задача решалась аналитически для случая малых амплитуд локализованных на примесях колебаний. Показано, что при определенных параметрах примеси (глубина, ширина) можно получить локализованные волны солитонного типа. Найдены области значений параметров системы, в которых существуют локализованные волны определенного типа, а также область перехода от бризерных к солитонным типам колебаний. Были определены значения глубины и ширины примеси, при которых наблюдается переход от бризерного к солитонному типу локализованных колебаний. Были получены и рассмотрены различные сценарии колебаний солитонного типа с отрицательными и положительными значениями амплитуд на всех трех примесях, а также и смешанные случаи. Показано, что в случае расстояния между примесями много меньше единицы отсутствует переходная область, в которой зарождающийся бризер после потери энергии на излучение переходит в солитон. Показано, что рассмотренная модель может быть использована, например, для описания динамики волн намагниченности в мультислойных магнетиках.

  9. Распространение устойчивых когерентных образований электромагнитного поля в нелинейных средах с меняющимися в пространстве параметрами может быть описано в рамках итераций нелинейных интегральных преобразований. Показано что для ряда актуальных геометрий задач нелинейной оптики численное моделирование путем сведения к динамическим системам с дискретным временем и непрерывными пространственными переменными, основанное на итерациях локальных нелинейных отображений Фейгенбаума и Икеды, а также нелокальных диффузионно-дисперсионных линейных интегральных преобразований, эквивалентно в довольно широком диапазоне параметров дифференциальным уравнениям в частных производных типа Гинзбурга–Ландау. Такие нелокальные отображения, представляющие собой при численной реализации произведения матричных операторов, оказываются устойчивыми численно-разностными схемами, обеспечивают быструю сходимость и адекватную аппроксимацию решений. Реалистичность данного подхода позволяет учитывать влияние шумов на нелинейную динамику путем наложения на расчетный массив чисел при каждой итерации пространственного шума, задаваемого в виде многомодового случайного процесса, и производить отбор устойчивых волновых конфигураций. Нелинейные волновые образования, описываемые данным методом, включают оптические фазовые сингулярности, пространственные солитоны и турбулентные состояния с быстрым затуханием корреляций. Определенный интерес представляют полученные данным численным методом периодические конфигурации электромагнитного поля, возникающие в результате фазовой синхронизации, такие как оптические решетки и самоорганизованные вихревые кластеры.

  10. Закирьянов Ф.К., Якушевич Л.В.
    Управление динамикой кинка модифицированного уравнения синус-Гордона внешним воздействием с меняющимися параметрами
    Компьютерные исследования и моделирование, 2013, т. 5, № 5, с. 821-834

    В работе представлены результаты, подтверждающие возможность управления движением кинка модифицированного уравнения синус-Гордона внешним воздействием с изменяющимися параметрами. Рассмотрены три типа внешних воздействий: постоянное, периодическое с постоянной частотой и периодическое частотно-модулированное. С использованием метода Мак-Лафлина–Скотта получены зависимости координаты и скорости кинка от времени при разных значениях параметров внешнего воздействия. Показано, что изменяя параметры, можно регулировать скорость и направление движения кинка.

    Просмотров за год: 2. Цитирований: 4 (РИНЦ).
Страницы: следующая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.