Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'model stability':
Найдено статей: 91
  1. Абделхафиз М.А., Цибулин В.Г.
    Моделирование анизотропной конвекции бинарной жидкости, насыщающей пористую среду
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 801-816

    В предположении анизотропии свойств жидкости и среды моделируется возникновение гравитационной конвекции в пористом прямоугольнике, насыщенном теплопроводной жидкостью с примесью и подогреваемом снизу. Рассматривается плоская задача на основе уравнений Дарси – Буссинеска для бинарной жидкости с учетом эффекта Соре. Устанавливаются условия, при которых система уравнений относительно функции тока, отклонений температуры и концентрации от равновесного состояния является косимметричной и возможно ответвление от механического равновесия непрерывного семейства стационарных движений.

    Показано, что в условиях существования косимметрии имеются подобласти параметров, для которых критические значения температурного и концентрационного чисел Рэлея находятся по явным формулам. Для случая монотонной неустойчивости механического равновесия выведены формулы критических чисел Рэлея и приведены результаты подтверждающих вычислений.

    Развита конечно-разностная дискретизация задачи второго порядка точности по пространственным переменным, сохраняющая косимметричность исследуемой системы. С помощью разработанной численной схемы проведен анализ устойчивости механического равновесия при различных комбинациях управляющих параметров.

    На плоскости температурного и концентрационного чисел Рэлея представлены нейтральные кривые устойчивости механического равновесия и рассчитаны участки колебательной неустойчивости. Установлена зависимость от параметров термодиффузии концентрационного числа Рэлея, при котором колебательная неустойчивость предшествует монотонной. В общей ситуации, когда не выполняются условия косимметрии, выведенные формулы критических чисел Рэлея могут быть использованы для оценки порогов возникновения конвекции.

    Abdelhafez M.A., Tsybulin V.G.
    Modeling of anisotropic convection for the binary fluid in porous medium
    Computer Research and Modeling, 2018, v. 10, no. 6, pp. 801-816

    We study an appearance of gravitational convection in a porous medium saturated by the double-diffusive fluid. The rectangle heated from below is considered with anisotropy of media properties. We analyze Darcy – Boussinesq equations for a binary fluid with Soret effect.

    Resulting system for the stream function, the deviation of temperature and concentration is cosymmetric under some additional conditions for the parameters of the problem. It means that the quiescent state (mechanical equilibrium) loses its stability and a continuous family of stationary regimes branches off. We derive explicit formulas for the critical values of the Rayleigh numbers both for temperature and concentration under these conditions of the cosymmetry. It allows to analyze monotonic instability of mechanical equilibrium, the results of corresponding computations are presented.

    A finite-difference discretization of a second-order accuracy is developed with preserving of the cosymmetry of the underlying system. The derived numerical scheme is applied to analyze the stability of mechanical equilibrium.

    The appearance of stationary and nonstationary convective regimes is studied. The neutral stability curves for the mechanical equilibrium are presented. The map for the plane of the Rayleigh numbers (temperature and concentration) are displayed. The impact of the parameters of thermal diffusion on the Rayleigh concentration number is established, at which the oscillating instability precedes the monotonic instability. In the general situation, when the conditions of cosymmetry are not satisfied, the derived formulas of the critical Rayleigh numbers can be used to estimate the thresholds for the convection onset.

    Просмотров за год: 27.
  2. Багаев Р.А., Голубев В.И., Голубева Ю.А.
    Full-wave 3D earthquake simulation using the double-couple model and the grid-characteristic method
    Компьютерные исследования и моделирование, 2019, т. 11, № 6, с. 1061-1067

    One of the destroying natural processes is the initiation of the regional seismic activity. It leads to a large number of human deaths. Much effort has been made to develop precise and robust methods for the estimation of the seismic stability of buildings. One of the most common approaches is the natural frequency method. The obvious drawback of this approach is a low precision due to the model oversimplification. The other method is a detailed simulation of dynamic processes using the finite-element method. Unfortunately, the quality of simulations is not enough due to the difficulty of setting the correct free boundary condition. That is why the development of new numerical methods for seismic stability problems is a high priority nowadays.

    The present work is devoted to the study of spatial dynamic processes occurring in geological medium during an earthquake. We describe a method for simulating seismic wave propagation from the hypocenter to the day surface. To describe physical processes, we use a system of partial differential equations for a linearly elastic body of the second order, which is solved numerically by a grid-characteristic method on parallelepiped meshes. The widely used geological hypocenter model, called the “double-couple” model, was incorporated into this numerical algorithm. In this case, any heterogeneities, such as geological layers with curvilinear boundaries, gas and fluid-filled cracks, fault planes, etc., may be explicitly taken into account.

    In this paper, seismic waves emitted during the earthquake initiation process are numerically simulated. Two different models are used: the homogeneous half-space and the multilayered geological massif with the day surface. All of their parameters are set based on previously published scientific articles. The adequate coincidence of the simulation results is obtained. And discrepancies may be explained by differences in numerical methods used. The numerical approach described can be extended to more complex physical models of geological media.

    Bagaev R.A., Golubev V.I., Golubeva Y.A.
    Full-wave 3D earthquake simulation using the double-couple model and the grid-characteristic method
    Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1061-1067

    One of the destroying natural processes is the initiation of the regional seismic activity. It leads to a large number of human deaths. Much effort has been made to develop precise and robust methods for the estimation of the seismic stability of buildings. One of the most common approaches is the natural frequency method. The obvious drawback of this approach is a low precision due to the model oversimplification. The other method is a detailed simulation of dynamic processes using the finite-element method. Unfortunately, the quality of simulations is not enough due to the difficulty of setting the correct free boundary condition. That is why the development of new numerical methods for seismic stability problems is a high priority nowadays.

    The present work is devoted to the study of spatial dynamic processes occurring in geological medium during an earthquake. We describe a method for simulating seismic wave propagation from the hypocenter to the day surface. To describe physical processes, we use a system of partial differential equations for a linearly elastic body of the second order, which is solved numerically by a grid-characteristic method on parallelepiped meshes. The widely used geological hypocenter model, called the “double-couple” model, was incorporated into this numerical algorithm. In this case, any heterogeneities, such as geological layers with curvilinear boundaries, gas and fluid-filled cracks, fault planes, etc., may be explicitly taken into account.

    In this paper, seismic waves emitted during the earthquake initiation process are numerically simulated. Two different models are used: the homogeneous half-space and the multilayered geological massif with the day surface. All of their parameters are set based on previously published scientific articles. The adequate coincidence of the simulation results is obtained. And discrepancies may be explained by differences in numerical methods used. The numerical approach described can be extended to more complex physical models of geological media.

  3. Маловичко М.С., Петров И.Б.
    О численном решении совместных обратных задач геофизики с использованием требования структурного подобия
    Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 329-343

    Решение обратных геофизических задач сложно в силу их математически некорректной постановки и большой вычислительной емкости. Геофизическая разведка малоизученных регионов, таких как шельф северных морей, дополнительно осложнена отсутствием надежных геологических данных. В этих условиях большое значение приобретают способы совместного использования информации, полученной различными геофизическими методами. Настоящая работа посвящена развитию подхода к совместной инверсии, основанного на требовании обращения в ноль определителя матрицы Грама для векторов параметров тех типов, которые используются в инверсии. В рамках этого подхода минимизируется нелинейный функционал, состоящий из суммы квадратов взвешенных невязок, суммы стабилизирующих функционалов и члена, отвечающего за наложение условия структурного подобия. Мы применяем этот подход к инверсии двух типов геофизических данных: сейсмики и электроразведки. Мы изучаем инверсию акустических данных совместно с низкочастотным электрическим полем с наложением требования структурного подобия на результирующие распределения скорости звука и электропроводности.

    Рассмотрены постановка задачи обратной задачи и численный метод оптимизации. Нелинейная минимизация выполняется методом сопряженных градиентов. Эффективность разработанного подхода продемонстрирована на численном примере, в котором трехмерное распределение электропроводности считалось известным точно, а распределение скорости звука подбиралось путем решения соответствующей обратной задачи. Для численного эксперимента было использовано распределение скорости звука, построенное на основании упрощенных сейсмических горизонтов реального морского месторождения. Для этого распределения рассчитывались синтетические сейсмограммы, которые служили входными данными для алгоритма инверсии. Результирующее распределение скорости звука не только обеспечивало совпадение данных до заданной точности, но и было согласовано с заданным распределением электропроводности. На численных примерах продемонстрировано, что оптимально выбранный вес структурного ограничения может существенно улучшить детальность решения обратной задачи и позволяет восстановить особенности, которые иначе были бы не разрешены.

    Malovichko M.S., Petrov I.B.
    On numerical solution of joint inverse geophysical problems with structural constraints
    Computer Research and Modeling, 2020, v. 12, no. 2, pp. 329-343

    Inverse geophysical problems are difficult to solve due to their mathematically incorrect formulation and large computational complexity. Geophysical exploration in frontier areas is even more complicated due to the lack of reliable geological information. In this case, inversion methods that allow interpretation of several types of geophysical data together are recognized to be of major importance. This paper is dedicated to one of such inversion methods, which is based on minimization of the determinant of the Gram matrix for a set of model vectors. Within the framework of this approach, we minimize a nonlinear functional, which consists of squared norms of data residual of different types, the sum of stabilizing functionals and a term that measures the structural similarity between different model vectors. We apply this approach to seismic and electromagnetic synthetic data set. Specifically, we study joint inversion of acoustic pressure response together with controlled-source electrical field imposing structural constraints on resulting electrical conductivity and P-wave velocity distributions.

    We start off this note with the problem formulation and present the numerical method for inverse problem. We implemented the conjugate-gradient algorithm for non-linear optimization. The efficiency of our approach is demonstrated in numerical experiments, in which the true 3D electrical conductivity model was assumed to be known, but the velocity model was constructed during inversion of seismic data. The true velocity model was based on a simplified geology structure of a marine prospect. Synthetic seismic data was used as an input for our minimization algorithm. The resulting velocity model not only fit to the data but also has structural similarity with the given conductivity model. Our tests have shown that optimally chosen weight of the Gramian term may improve resolution of the final models considerably.

  4. Садин Д.В.
    Приложение гибридного метода крупных частиц к расчету взаимодействия ударной волны со слоем газовзвеси
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1323-1338

    Для модельного неоднородного уравнения переноса с источником выполнен анализ устойчивости линейной гибридной схемы (комбинации противопоточной и центральной аппроксимаций). Получены условия устойчивости, зависящие от параметра гибридности, фактора интенсивности источника (произведения интенсивности на шаг по времени) и весового коэффициента линейной комбинации мощности источника на нижнем и верхнем временном слое. В нелинейном случае для уравнений движения неравновесной по скоростям и температурам газовзвеси расчетным путем подтвержден линейный анализ устойчивости. Установлено, что предельно допустимое число Куранта гибридного метода крупных частиц второго порядка точности по пространству и времени при неявном учете трения и теплообмена между газом и частицами не зависит от фактора интенсивности межфазных взаимодействий, шага расчетной сетки и времен релаксации фаз (K-устойчивость). В традиционном случае явного способа расчета источниковых членов для значений безразмерного фактора интенсивности больше 10 наблюдается катастрофическое (на несколько порядков) снижение предельно допустимого числа Куранта, при котором расчетный шаг по времени становится неприемлемо малым.

    На основе базовых соотношений распада разрыва в равновесной гетерогенной среде получено асимптотически точное автомодельное решение задачи взаимодействия ударной волны со слоем газовзвеси, к которому сходится численное решение двухскоростной двухтемпературной динамики газовзвеси при уменьшении размеровди сперсных частиц.

    Изучены динамика движения скачка уплотнения в газе и его взаимодействия с ограниченным слоем газовзвеси для различных размеров дисперсных частиц: 0.1, 2 и 20 мкм. Задача характеризуется двумя распадами разрывов: отраженной и преломленной ударными волнами на левой границе слоя, отраженной волной разрежения и прошедшим скачком уплотнения на правой контактной границе. Обсуждено влияние релаксационных процессов (безразмерных времен релаксации фаз) на характер течения газовзвеси. Для мелких частиц времена выравнивания скоростей и температур фаз малы, а зоны релаксации являются подсеточными. Численное решение в характерных точках с относительной точностью $O\, (10^{−4})$  сходится к автомодельным решениям.

    For a non-homogeneous model transport equation with source terms, the stability analysis of a linear hybrid scheme (a combination of upwind and central approximations) is performed. Stability conditions are obtained that depend on the hybridity parameter, the source intensity factor (the product of intensity per time step), and the weight coefficient of the linear combination of source power on the lower- and upper-time layer. In a nonlinear case for the non-equilibrium by velocities and temperatures equations of gas suspension motion, the linear stability analysis was confirmed by calculation. It is established that the maximum permissible Courant number of the hybrid large-particle method of the second order of accuracy in space and time with an implicit account of friction and heat exchange between gas and particles does not depend on the intensity factor of interface interactions, the grid spacing and the relaxation times of phases (K-stability). In the traditional case of an explicit method for calculating the source terms, when a dimensionless intensity factor greater than 10, there is a catastrophic (by several orders of magnitude) decrease in the maximum permissible Courant number, in which the calculated time step becomes unacceptably small.

    On the basic ratios of Riemann’s problem in the equilibrium heterogeneous medium, we obtained an asymptotically exact self-similar solution of the problem of interaction of a shock wave with a layer of gas-suspension to which converge the numerical solution of two-velocity two-temperature dynamics of gassuspension when reducing the size of dispersed particles.

    The dynamics of the shock wave in gas and its interaction with a limited gas suspension layer for different sizes of dispersed particles: 0.1, 2, and 20 ìm were studied. The problem is characterized by two discontinuities decay: reflected and refracted shock waves at the left boundary of the layer, reflected rarefaction wave, and a past shock wave at the right contact edge. The influence of relaxation processes (dimensionless phase relaxation times) to the flow of a gas suspension is discussed. For small particles, the times of equalization of the velocities and temperatures of the phases are small, and the relaxation zones are sub-grid. The numerical solution at characteristic points converges with relative accuracy $O \, (10^{-4})$ to self-similar solutions.

  5. Ха Д.Т., Цибулин В.Г.
    Уравнения диффузии–реакции–адвекции для системы «хищник–жертва» в гетерогенной среде
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1161-1176

    Анализируются варианты учета неоднородности среды при компьютерном моделировании динамики хищника и жертвы на основе системы уравнений реакции–диффузии–адвекции. Локальное взаимодействие видов (члены реакции) описывается логистическим законом роста для жертвы и соотношениями Беддингтона – ДеАнгелиса, частными случаями которых являются функциональный отклик Холлинга второго рода и модель Ардити – Гинзбурга. Рассматривается одномерная по пространству задача для неоднородного ресурса (емкости среды) и трех видов таксиса (жертвы на ресурс и от хищника, хищника к жертве). Используется аналитический подход для исследования устойчивости стационарных решений в случае локального взаимодействия (бездиффузионный подход) и вычисления на основе метода прямых для учета диффузионных и адвективных процессов. Сравнение критических значений параметра смертности хищников показало, что при постоянных коэффициентах в соотношениях Беддингтона – ДеАнгелиса получаются переменные по пространственной координате критические величины, а для модели Ардити – Гинзбурга данный эффект не наблюдается. Предложена модификация членов реакции, позволяющая учесть неоднородность ресурса. Представлены численные результаты по динамике видов для больших и малых миграционных коэффициентов, демонстрирующие снижение влияния вида локальных членов на формирующиеся пространственно-временные распределения популяций. Проанализированы бифуркационные переходы при изменении параметров диффузии–адвекции и членов реакции.

    Ha D.T., Tsybulin V.G.
    Diffusion–reaction–advection equations for the predator–prey system in a heterogeneous environment
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1161-1176

    We analyze variants of considering the inhomogeneity of the environment in computer modeling of the dynamics of a predator and prey based on a system of reaction-diffusion–advection equations. The local interaction of species (reaction terms) is described by the logistic law for the prey and the Beddington –DeAngelis functional response, special cases of which are the Holling type II functional response and the Arditi – Ginzburg model. We consider a one-dimensional problem in space for a heterogeneous resource (carrying capacity) and three types of taxis (the prey to resource and from the predator, the predator to the prey). An analytical approach is used to study the stability of stationary solutions in the case of local interaction (diffusionless approach). We employ the method of lines to study diffusion and advective processes. A comparison of the critical values of the mortality parameter of predators is given. Analysis showed that at constant coefficients in the Beddington –DeAngelis model, critical values are variable along the spatial coordinate, while we do not observe this effect for the Arditi –Ginzburg model. We propose a modification of the reaction terms, which makes it possible to take into account the heterogeneity of the resource. Numerical results on the dynamics of species for large and small migration coefficients are presented, demonstrating a decrease in the influence of the species of local members on the emerging spatio-temporal distributions of populations. Bifurcation transitions are analyzed when changing the parameters of diffusion–advection and reaction terms.

  6. Крат Ю.Г., Потапов И.И.
    Устойчивость дна в напорных каналах
    Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 1061-1068

    В работе на основе предложенной ранее русловой модели решена одномерная задача устойчивости песчаного дна напорного канала. Особенностью исследуемой задачи является используемое оригинальное уравнение русловых деформаций, учитывающее влияние физико-механических и гранулометрических характеристик донного материала и неровности донной поверхности при русловом анализе. Еще одной особенностью рассматриваемой задачи является учет влияния не только придонного касательного, но и нормального напряжения при изучении русловой неустойчивости. Из решения задачи устойчивости песчаного дна для напорного канала получена аналитическая зависимость, определяющая длину волны для быстрорастущих донных возмущений. Выполнен анализ полученной аналитической зависимости, показано, что она обобщает ряд известных эмпирических формул: Коулмана, Шуляка и Бэгнольда. Структура полученной аналитической зависимости указывает на существование двух гидродинамических режимов, характеризуемых числом Фруда, при которых рост донных возмущений может сильно или слабо зависеть от числа Фруда. Учитывая природную стохастичность процесса движения донных волн и наличие области определения решения со слабой зависимостью от чисел Фруда, можно сделать вывод о том, что экспериментальное наблюдение за процессом развития движения донных волн в данной области должно приводить к получению данных, имеющих существенную дисперсию, что и происходит в действительности.

    Krat Y.G., Potapov I.I.
    Bottom stability in closed conduits
    Computer Research and Modeling, 2015, v. 7, no. 5, pp. 1061-1068

    In this paper on the basis of the riverbed model proposed earlier the one-dimensional stability problem of closed flow channel with sandy bed is solved. The feature of the investigated problem is used original equation of riverbed deformations, which takes into account the influence of mechanical and granulometric bed material characteristics and the bed slope when riverbed analyzing. Another feature of the discussed problem is the consideration together with shear stress influence normal stress influence when investigating the riverbed instability. The analytical dependence determined the wave length of fast-growing bed perturbations is obtained from the solution of the sandy bed stability problem for closed flow channel. The analysis of the obtained analytical dependence is performed. It is shown that the obtained dependence generalizes the row of well-known empirical formulas: Coleman, Shulyak and Bagnold. The structure of the obtained analytical dependence denotes the existence of two hydrodynamic regimes characterized by the Froude number, at which the bed perturbations growth can strongly or weakly depend on the Froude number. Considering a natural stochasticity of the waves movement process and the presence of a definition domain of the solution with a weak dependence on the Froude numbers it can be concluded that the experimental observation of the of the bed waves movement development should lead to the data acquisition with a significant dispersion and it occurs in reality.

    Просмотров за год: 1. Цитирований: 2 (РИНЦ).
  7. Калашников С.В., Кривощапов А.А., Митин А.Л., Николаев Н.В.
    Расчетные исследования аэродинамических характеристик тематической модели летательного аппарата схемы «летающее крыло» с помощью программного комплекса FlowVision
    Компьютерные исследования и моделирование, 2017, т. 9, № 1, с. 67-74

    Модернизация методики аэродинамического эксперимента на современном уровне подразумевает создание математических моделей аэродинамических труб (электронных АДТ), предназначенных для вычислительного сопровождения экспериментальных исследований. Применение электронных АДТ в перспективе способно обеспечить получение достоверных аэродинамических характеристик летательных аппаратов по результатам исследования их моделей в аэродинамических трубах, согласования результатов, полученных на разных экспериментальных установках, сравнения расчетов моделей в безграничном потоке с учетом влияния подвесных устройств и границ потока в рабочей части экспериментальной установки.

    Решение данной задачи требует создания научного задела, что, в свою очередь, подразумевает выполнение экспериментальных методических исследований и обширного комплекса расчетных исследований на основе численного решения осредненных по Рейнольдсу уравнений Навье–Стокса с применением суперкомпьютерных технологий. При этом на различных этапах расчетных исследований необходимо моделировать не только летательный аппарат, но и комплексную геометрию рабочей части аэродинамической трубы и подвесных устройств, что требует дополнительных методических расчетов. Также определенные трудности может представлять моделирование ламинарно-турбулентного перехода на поверхности модели, который в большинстве случаев имеет место в условиях эксперимента.

    В данной работе представлены результаты расчетов аэродинамических характеристик тематической модели летательного аппарата схемы «летающее крыло» в безграничном потоке при разных углах атаки, полученные в рамках первого этапа работы по созданию математической модели рабочей части аэродинамической трубы Т-102 ЦАГИ. Расчеты выполнялись с использованием двухпараметрической k–ε модели турбулентности со специальными пристеночными функциями, приспособленными для расчета отрывных течений. В рамках данной работы исследовались основные продольные аэродинамические характеристики, было выполнено сравнение с результатами экспериментальных исследований в аэродинамической трубе Т-102 ЦАГИ с учетом погрешностей.

    Kalashnikov S.V., Krivoschapov A.A., Mitin A.L., Nikolaev N.V.
    Computational investigation of aerodynamic performance of the generic flying-wing aircraft model using FlowVision computational code
    Computer Research and Modeling, 2017, v. 9, no. 1, pp. 67-74

    Modern approach to modernization of the experimental techniques involves design of mathematical models of the wind-tunnel, which are also referred to as Electronic of Digital Wind-Tunnels. They are meant to supplement experimental data with computational analysis. Using Electronic Wind-Tunnels is supposed to provide accurate information on aerodynamic performance of an aircraft basing on a set of experimental data, to obtain agreement between data from different test facilities and perform comparison between computational results for flight conditions and data with the presence of support system and test section.

    Completing this task requires some preliminary research, which involves extensive wind-tunnel testing as well as RANS-based computational research with the use of supercomputer technologies. At different stages of computational investigation one may have to model not only the aircraft itself but also the wind-tunnel test section and the model support system. Modelling such complex geometries will inevitably result in quite complex vertical and separated flows one will have to simulate. Another problem is that boundary layer transition is often present in wind-tunnel testing due to quite small model scales and therefore low Reynolds numbers.

    In the current article the first stage of the Electronic Wind-Tunnel design program is covered. This stage involves computational investigation of aerodynamic characteristics of the generic flying-wing UAV model previously tested in TsAGI T-102 wind-tunnel. Since this stage is preliminary the model was simulated without taking test-section and support system geometry into account. The boundary layer was considered to be fully turbulent.

    For the current research FlowVision computational code was used because of its automatic grid generation feature and stability of the solver when simulating complex flows. A two-equation k–ε turbulence model was used with special wall functions designed to properly capture flow separation. Computed lift force and drag force coefficients for different angles-of-attack were compared to the experimental data.

    Просмотров за год: 10. Цитирований: 1 (РИНЦ).
  8. Ильичев В.Г., Дашкевич Л.В.
    Оптимальный промысел и эволюция путей миграции рыбных популяций
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 879-893

    Представлена новая дискретная эколого-эволюционная математическая модель, в которой реализованы механизмы поиска эволюционно устойчивых маршрутов миграции рыбных популяций. Предложенные адаптивные конструкции имеют малую размерность и поэтому обладают высоким быстродействием, что позволяет проводить компьютерные расчеты на длительный срок за приемлемое машинное время. При исследовании устойчивости использованы как геометрические подходы нелинейного анализа, так и компьютерные асимптотические методы. Динамика миграции рыбной популяции описывается некоторой марковской матрицей, которая может изменяться в процессе эволюции. В семействе марковских матриц (фиксированной размерности) выделены базисные матрицы, которые использованы для генерации маршрутов миграции мутантов. В результате конкуренции исходной популяции с мутантами выявляется перспективное направление эволюции пространственного поведения рыбы при заданном промысле и кормовой базе. Данная модель была применена к решению проблемы оптимального вылова на долгосрочную перспективу, при условии, что водоем разделен на две части, у каждой из которых свой собственник. При решении оптимизационных задач используется динамическое программирование, основанное на построении функции Беллмана. Обнаружена парадоксальная стратегия заманивания, когда один из участников промысла на своей акватории временно сокращает вылов. В этом случае мигрирующая рыба больше времени проводит в этом районе (при условии равной кормовой базы). Такой маршрут эволюционно закрепляется и не изменяется даже после возобновления промысла в этом районе. Второй участник промысла может восстановить статус-кво, применив заманивание на своей части акватории. Возникает бесконечная последовательность заманиваний — своеобразная игра в поддавки. Введено новое эффективное понятие — внутренняя цена рыбной популяции, зависящая от района водоема. По сути, эти цены представляют собой частные производные функции Беллмана и могут быть использованы в качестве налога на выловленную рыбу. В этом случае проблема многолетнего промысла сводится к решению задачи одногодичной оптимизации.

    Il’ichev V.G., Dashkevich L.V.
    Optimal fishing and evolution of fish migration routes
    Computer Research and Modeling, 2019, v. 11, no. 5, pp. 879-893

    A new discrete ecological-evolutionary mathematical model is presented, in which the search mechanisms for evolutionarily stable migration routes of fish populations are implemented. The proposed adaptive designs have a small dimension, and therefore have high speed. This allows carrying out calculations on long-term perspective for an acceptable machine time. Both geometric approaches of nonlinear analysis and computer “asymptotic” methods were used in the study of stability. The migration dynamics of the fish population is described by a certain Markov matrix, which can change during evolution. The “basis” matrices are selected in the family of Markov matrices (of fixed dimension), which are used to generate migration routes of mutant. A promising direction of the evolution of the spatial behavior of fish is revealed for a given fishery and food supply, as a result of competition of the initial population with mutants. This model was applied to solve the problem of optimal catch for the long term, provided that the reservoir is divided into two parts, each of which has its own owner. Dynamic programming is used, based on the construction of the Bellman function, when solving optimization problems. A paradoxical strategy of “luring” was discovered, when one of the participants in the fishery temporarily reduces the catch in its water area. In this case, the migrating fish spends more time in this area (on condition of equal food supply). This route is evolutionarily fixes and does not change even after the resumption of fishing in the area. The second participant in the fishery can restore the status quo by applying “luring” to its part of the water area. Endless sequence of “luring” arises as a kind of game “giveaway”. A new effective concept has been introduced — the internal price of the fish population, depending on the zone of the reservoir. In fact, these prices are Bellman's private derivatives, and can be used as a tax on caught fish. In this case, the problem of long-term fishing is reduced to solving the problem of one-year optimization.

  9. Потапов И.И., Силакова Ю.Г.
    Исследование процесса роста амплитуды донных волн в реках и каналах
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1339-1347

    Работа является теоретическим исследованием процесса развития донной неустойчивости в реках и каналах. На основе аналитической модели расхода влекомых наносов, учитывающей влияние уклонов донной поверхности, придонного давления и касательного напряжения на движение донного материала и аналитического решения, позволяющего определять придонные касательные и нормальные напряжения, возникающие при обтекании турбулентным потоком периодических длинных донных волн малой крутизны, сформулирована и решена задача определения скорости роста амплитуды для растущих донных волн. Полученное решение задачи позволяет определить характерное время роста донной волны, скорость роста донной волны и ее максимальную амплитуду в зависимости от физических и гранулометрических характеристик донного материала и гидравлических параметров водного потока. На примере развития периодической синусоидальной донной волны малой крутизны выполнена верификация решения, полученного для сформулированной задачи. Полученное аналитическое решение задачи позволяет определить скорость роста амплитуды донной волны от текущего значения ее амплитуды. Сравнение полученного решения с экспериментальными данными показало их хорошее качественное и количественное согласование.

    Potapov I.I., Silakova Y.G.
    Investigation of the process of growth of the amplitude of bed waves in rivers and channels
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1339-1347

    The work is a theoretical study of the development of bottom instability in rivers and canals. Based on an analytical model of the load of sediment, taking into account the influence of slopes of the bottom surface, bottom pressure and shear stress on the movement of the bottom material and an analytical solution that allows to determine bottom tangential and normal stresses over the periodic bottom, the problem of determining the amplitude growth rate for growing bottom waves is formulated and solved . The obtained solution of the problem allows us to determine the characteristic time of the growth of the bottom wave, the growth rate of the bottom wave and its maximum amplitude, depending on the physical and particle size characteristics of the bottom material and the hydraulic parameters of the water flow. On the example of the development of a periodic sinusoidal bottom wave of low steepness, the verification of the solution obtained for the formulated problem is carried out. The obtained analytical solution to the problem allows us to determine the growth rate of the amplitude of the bottom wave from the current value of its amplitude. Comparison of the obtained solution with experimental data showed their good qualitative and quantitative agreement.

  10. Жданова О.Л., Жданов В.С., Неверова Г.П.
    Моделирование динамики планктонного сообщества с учетом токсичности фитопланктона
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1301-1323

    Предложена трехкомпонентная модельпланк тонного сообщества с дискретным временем. Сообщество представлено зоопланктоном и двумя конкурирующими за ресурсы видами фитопланктона: токсичным и нетоксичным. Модельдв ух связанных уравнений Рикера, ориентированная на описание динамики конкурентного сообщества, используется для описания взаимодействия двух видов фитопланктона и позволяет неявно учитывать ограничение роста биомассы каждого из видов-конкурентов доступностью внешних ресурсов. Изъятие фитопланктона за счет питания зоопланктоном описывается трофической функцией Холлинга II типа с учетом насыщения хищника. Способность фитопланктона защищаться от хищничества и избирательность питания хищника учтены в виде ограничения потребления: зоопланктон питается только нетоксичным фитопланктоном.

    Анализ сценариев перехода от стационарной динамики к колебаниям численности сообщества показал, что потеря устойчивости нетривиального равновесия, соответствующего сосуществованию двух видов фитопланктона и зоопланктона, может происходитьч ерез каскад бифуркаций удвоения периода, также возникает бифуркация Неймарка – Сакера, ведущая к возникновению квазипериодических колебаний. Вариация внутрипопуляционных параметров фито- или зоопланктона может приводитьк выраженным изменениям динамического режима в сообществе: резким переходам от регулярной к квазипериодической динамике и далее к точным циклам с небольшим периодом или даже стационарной динамике. В областях мультистабильности возможна кардинальная смена как динамического режима, так и состава сообщества за счет изменения начальных условий или же текущего состава сообщества. Предложенная в данной работе трехкомпонентная модель динамики сообщества с дискретным временем, являясь достаточно простой, позволяет получитьадекв атную динамику взаимодействующих видов: возникают динамические режимы, отражающие основные свойства экспериментальной динамики. Так, наблюдается динамика характерная для модели «хищник–жертва» без учета эволюции — с отставанием динамики хищника от жертвы примерно на четвертьперио да. Рассмотрение генетической неоднородности фитопланктона, даже в случае выделения всего двух генетически различных форм: токсичного и нетоксичного, позволяет наблюдатьв модели как длиннопериодические противофазные циклы хищника и жертвы, так и скрытые циклы, при которых плотностьч исленности жертв остается практически постоянной, а плотность численности хищников колеблется, демонстрируя влияние быстрой эволюции, маскирующей трофическое взаимодействие видов.

    Zhdanova O.L., Zhdanov V.S., Neverova G.P.
    Modeling the dynamics of plankton community considering phytoplankton toxicity
    Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1301-1323

    We propose a three-component discrete-time model of the phytoplankton-zooplankton community, in which toxic and non-toxic species of phytoplankton compete for resources. The use of the Holling functional response of type II allows us to describe an interaction between zooplankton and phytoplankton. With the Ricker competition model, we describe the restriction of phytoplankton biomass growth by the availability of external resources (mineral nutrition, oxygen, light, etc.). Many phytoplankton species, including diatom algae, are known not to release toxins if they are not damaged. Zooplankton pressure on phytoplankton decreases in the presence of toxic substances. For example, Copepods are selective in their food choices and avoid consuming toxin-producing phytoplankton. Therefore, in our model, zooplankton (predator) consumes only non-toxic phytoplankton species being prey, and toxic species phytoplankton only competes with non-toxic for resources.

    We study analytically and numerically the proposed model. Dynamic mode maps allow us to investigate stability domains of fixed points, bifurcations, and the evolution of the community. Stability loss of fixed points is shown to occur only through a cascade of period-doubling bifurcations. The Neimark – Sacker scenario leading to the appearance of quasiperiodic oscillations is found to realize as well. Changes in intrapopulation parameters of phytoplankton or zooplankton can lead to abrupt transitions from regular to quasi-periodic dynamics (according to the Neimark – Sacker scenario) and further to cycles with a short period or even stationary dynamics. In the multistability areas, an initial condition variation with the unchanged values of all model parameters can shift the current dynamic mode or/and community composition.

    The proposed discrete-time model of community is quite simple and reveals dynamics of interacting species that coincide with features of experimental dynamics. In particular, the system shows behavior like in prey-predator models without evolution: the predator fluctuations lag behind those of prey by about a quarter of the period. Considering the phytoplankton genetic heterogeneity, in the simplest case of two genetically different forms: toxic and non-toxic ones, allows the model to demonstrate both long-period antiphase oscillations of predator and prey and cryptic cycles. During the cryptic cycle, the prey density remains almost constant with fluctuating predators, which corresponds to the influence of rapid evolution masking the trophic interaction.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.