Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Нахождение особых решений многомерных дифференциальных уравнений типа Клеро в частных производных с тригонометрическими функциями
Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 33-42В работе изучается класс дифференциальных уравнений типа Клеро в частных производных первого порядка, которые представляют собой многомерное обобщение обыкновенного дифференциального уравнения Клеро на случай, когда искомая функция зависит от многих переменных. Известно, что общее решение дифференциального уравнения типа Клеро в частных производных представляет собой семейство интегральных (гипер-) плоскостей. Помимо общего решения, могут существовать частные решения, а в некоторых частных случаях удается найти особое (сингулярное) решение.
Целью работы является нахождение особых решений многомерных дифференциальных уравнений типа Клеро в частных производных первого порядка со специальной правой частью. В работе сформулирован критерий существования особого решения дифференциального уравнения типа Клеро в частных производных для случая, когда функция от производных представляет собой функцию от линейной комбинации частных производных. Получены сингулярные решения для данного типа дифференциальных уравнений с тригонометрическими функциями от линейной комбинации $n$-независимых переменных с произвольными коэффициентами. Показано, что задача нахождения особого решения сводится к решению системы трансцендентных уравнений, содержащих исходные тригонометрические функции. В статье описана процедура нахождения сингулярного решения уравнения типа Клеро, основная идея которой заключается в нахождении не частных производных искомой функции, как функций независимых переменных, а линейных комбинаций частных производных с некоторыми коэффициентами. Данный метод может быть применен для нахождения особых решений уравнений типа Клеро, для которых данная структура сохраняется.
Работа организована следующим образом. Введение содержит краткий обзор некоторых современных результатов, имеющих отношение к теме исследования уравнений типа Клеро. Вторая часть является основной, в ней сформулирована задача работы и описан метод поиска сингулярных решений дифференциальных уравнениях типа Клеро в частных производных со специальной правой частью. Основным результатом работы является нахождение сингулярных решений уравнений, содержащих тригонометрические функции, приведенные в основной части работы в качестве примеров, иллюстрирующих описанный ранее метод. В заключении сформулированы результаты работы и обсуждается направление дальнейших исследований.
Ключевые слова: дифференциальные уравнения в частных производных, дифференциальные уравнения типа Клеро, сингулярные (особые) решения, тригонометрические функции.
Singular solutions of the multidimensional differential Clairaut-type equations in partial derivatives with trigonometric functions
Computer Research and Modeling, 2020, v. 12, no. 1, pp. 33-42We study the class of first order differential equations in partial derivatives of the Clairaut-type, which are a multidimensional generalization of the ordinary differential Clairaut equation to the case when the unknown function depends on many variables. It is known that the general solution of the Clairaut-type partial differential equation is a family of integral (hyper-) planes. In addition to the general solution, there can be particular solutions, and in some cases a special (singular) solution can be found.
The aim of the paper is to find a singular solution of the Clairaut-type equation in partial derivatives of the first order with a special right-hand side. In the paper, we formulate a criterion for the existence of a special solution of a differential equation of Clairaut type in partial derivatives for the case, when the function of the derivatives is a function of a linear combination of partial derivatives of unknown function. We obtain the singular solution for this type of differential equations with trigonometric functions of a linear combination of $n$-independent variables with arbitrary coefficients. It is shown that the task of finding a special solution is reduced to solving a system of transcendental equations containing initial trigonometric functions. The article describes the procedure for evaluation of a singular solution of Clairaut-type equation; the main idea is to find not partial derivatives of the unknown function, as functions of independent variables, but linear combinations of partial derivatives with some coefficients. This method can be used to find special solutions of Clairaut-type equations, for which this structure is preserved.
The work is organized as follows. The Introduction contains a brief review of some modern results related to the topic of the study of Clairaut-type equations. The Second part is the main one and it includes a formulation of the main task of the work and describes a method of evaluation of singular solutions for the Clairaut-type equations in partial derivatives with a special right-hand side. The main result of the work is to find singular solutions of the Clairaut-type equations containing trigonometric functions. These solutions are given in the main part of the work as an illustrating example for the method described earlier. In Conclusion, we formulate the results of the work and describe future directions of the research.
-
Численное решение нелинейныхинтегра льных уравнений второго рода типа Урысона методом последовательныхквадра тур с использованием погруженной схемы Дормана–Принса 5(4)
Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 275-300Представлен итерационный алгоритм, который численно решает нелинейные одномерные несингулярные интегральные уравнения Фредгольма и Вольтерры второго рода типа Урысона. Показано, что метод последовательных приближений Пикара может быть использован при численном решении такого типа уравнений. Сходимость числовой схемы гарантируется теоремами о неподвижной точке. При этом квадратурный алгоритм основан на явной форме встроенного правила Рунге–Кутты пятого порядка с адаптивным контролем размера шага. Возможность контроля локальных ошибок квадратур позволяет создавать очень точные автоматические числовые схемы и значительно уменьшить основной недостаток итераций Пикара, а именно чрезвычайно большое количество вычислений с увеличением глубины рекурсии. Наш алгоритм организован так, что по сравнению с большинством подходов нелинейность интегральных уравнений не вызывает каких-либо дополнительных вычислительных трудностей, его очень просто применять и реализовывать в программе. Наш алгоритм демонстрирует практически важные черты универсальности. Во-первых, следует подчеркнуть, что метод столь же прост в применении к нелинейным, как и к линейным уравнениям типа Фредгольма и Вольтерры. Во-вторых, алгоритм снабжен правилами останова, по которым вычисления могут в значительной степени контролироваться автоматически. Представлен компактный C++-код описанного алгоритма. Реализация нашей программы является самодостаточной: она не требует никаких предварительных вычислений, никаких внешних функций и библиотек и не требует дополнительной памяти. Приведены числовые примеры, показывающие применимость, эффективность, надежность и точность предложенного подхода.
Ключевые слова: уравнения типа Фредгольма и Вольтерры, теорема о неподвижной точке, анализ погрешностей ошибок, итерационные методы, погруженный метод Рунге–Кутты пятого порядка, адаптивный контроль величины шага.
Numerical solution of Urysohn type nonlinear second kind integral equations by successive quadratures using embedded Dormand and Prince scheme 5(4)
Computer Research and Modeling, 2020, v. 12, no. 2, pp. 275-300We present the iterative algorithm that solves numerically both Urysohn type Fredholm and Volterra nonlinear one-dimensional nonsingular integral equations of the second kind to a specified, modest user-defined accuracy. The algorithm is based on descending recursive sequence of quadratures. Convergence of numerical scheme is guaranteed by fixed-point theorems. Picard’s method of integrating successive approximations is of great importance for the existence theory of integral equations but surprisingly very little appears on numerical algorithms for its direct implementation in the literature. We show that successive approximations method can be readily employed in numerical solution of integral equations. By that the quadrature algorithm is thoroughly designed. It is based on the explicit form of fifth-order embedded Runge–Kutta rule with adaptive step-size self-control. Since local error estimates may be cheaply obtained, continuous monitoring of the quadrature makes it possible to create very accurate automatic numerical schemes and to reduce considerably the main drawback of Picard iterations namely the extremely large amount of computations with increasing recursion depth. Our algorithm is organized so that as compared to most approaches the nonlinearity of integral equations does not induce any additional computational difficulties, it is very simple to apply and to make a program realization. Our algorithm exhibits some features of universality. First, it should be stressed that the method is as easy to apply to nonlinear as to linear equations of both Fredholm and Volterra kind. Second, the algorithm is equipped by stopping rules by which the calculations may to considerable extent be controlled automatically. A compact C++-code of described algorithm is presented. Our program realization is self-consistent: it demands no preliminary calculations, no external libraries and no additional memory is needed. Numerical examples are provided to show applicability, efficiency, robustness and accuracy of our approach.
-
Методические аспекты численного решения задач внешнего обтекания на локально-адаптивных сетках с использованием пристеночных функций
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1269-1290Работа посвящена исследованию возможности повышения эффективности решения задач внешней аэродинамики. Изучаются методические аспекты применения локально-адаптивных неструктурированных расчетных сеток и пристеночных функций для численного моделирования турбулентных течений около летательных аппаратов. Интегрируются осредненные по Рейнольдсу уравнения Навье–Стокса, которые замыкаются стандартной моделью турбулентности $k–\varepsilon$. Рассматривается обтекание крылового профиля RAE 2822 турбулентным дозвуковым потоком вязкого сжимаемого газа. Расчеты проводятся в программном ВГД-комплексе FlowVision. Анализируется эффективность применения технологии сглаживания диффузионных потоков и формулы Брэдшоу для турбулентной вязкости в качестве мер, повышающих точность решения аэродинамических задач на локально-адаптивных сетках. Результаты исследования показывают, что использование технологии сглаживания диффузионных потоков приводит к существенному уменьшению расхождений в величине коэффициента лобового сопротивления между результатами расчетов и экспериментальными данными. Кроме того, обеспечивается регуляризация распределения коэффициента поверхностного трения на криволинейной поверхности профиля. Эти результаты позволяют сделать вывод о том, что данная технология является эффективным способом повышения точности расчетов на локально-адаптивных сетках. Формула Брэдшоу для динамического коэффициента турбулентной вязкости традиционно используется в модели SST $k–\omega$. В настоящей работе исследуется возможность ее применения в стандартной $k–\varepsilon$-модели турбулентности. Результаты расчетов показывают, что, с одной стороны, данная формула обеспечивает хорошее согласование суммарных аэродинамических характеристик и распределения коэффициента давления по поверхности профиля с экспериментом. Помимо этого, она значительно повышает точность моделирования течения в пограничном слое и в следе. С другой стороны, использование формулы Брэдшоу при моделировании обтекания профиля RAE 2822 приводит к занижению коэффициента поверхностного трения. Поэтому в работе делается вывод о том, что практическое применение формулы Брэдшоу требует ее предварительной валидации и калибровки на надежных экспериментальных данных для рассматриваемого класса задач. Результаты работы в целом показывают, что при использовании рассмотренных технологий численное решение задач внешнего обтекания на локально-адаптивных сетках с применением пристеночных функций обеспечивает точность, приемлемую для оперативной оценки аэродинамических характеристик, а ПК FlowVision является эффективным инструментом решения задач предварительного аэродинамического проектирования, концептуального проектирования и оптимизации аэродинамических форм.
Ключевые слова: профиль крыла, осредненные по Рейнольдсу уравнения Навье–Стокса, модель турбулентности, формула Брэдшоу, локально-адаптивная расчетная сетка, ПК FlowVision.
Methodical questions of numerical simulation of external flows on locally-adaptive grids using wall functions
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1269-1290The work is dedicated to investigation of possibility to increase the efficiency of solving external aerodynamic problems. Methodical questions of using locally-adaptive grids and wall functions for numerical simulation of turbulent flows past flying vehicles are studied. Reynolds-averaged Navier–Stokes equations are integrated. The equations are closed by standard $k–\varepsilon$ turbulence model. Subsonic turbulent flow of perfect compressible viscous gas past airfoil RAE 2822 is considered. Calculations are performed in CFD software FlowVision. The efficiency of using the technology of smoothing diffusion fluxes and the Bradshaw formula for turbulent viscosity is analyzed. These techniques are regarded as means of increasing the accuracy of solving aerodynamic problems on locally-adaptive grids. The obtained results show that using the technology of smoothing diffusion fluxes essentially decreases the discrepancy between computed and experimental values of the drag coefficient. In addition, the distribution of the skin friction coefficient over the curvilinear surface of the airfoil becomes more regular. These results indicate that the given technology is an effective way to increase the accuracy of calculations on locally-adaptive grids. The Bradshaw formula for the dynamic coefficient of turbulent viscosity is traditionally used in the SST $k–\omega$ turbulence model. The possibility to implement it in the standard $k–\varepsilon$ turbulence model is investigated in the present article. The calculations show that this formula provides good agreement of integral aerodynamic characteristics and the distribution of the pressure coefficient over the airfoil surface with experimental data. Besides that, it essentially augments the accuracy of simulation of the flow in the boundary layer and in the wake. On the other hand, using the Bradshaw formula in the simulation of the air flow past airfoil RAE 2822 leads to under-prediction of the skin friction coefficient. For this reason, the conclusion is made that practical use of the Bradshaw formula requires its preliminary validation and calibration on reliable experimental data available for the considered flows. The results of the work as a whole show that using the technologies discussed in numerical solution of external aerodynamic problems on locally-adaptive grids together with wall functions provides the computational accuracy acceptable for quick assessment of the aerodynamic characteristics of a flying vehicle. So, one can deduce that the FlowVision software is an effective tool for preliminary design studies, for conceptual design, and for aerodynamic shape optimization.
-
Релаксационная модель вязкого теплопроводного газа
Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 23-43Представлена гиперболическая модель вязкого теплопроводного газа, в которой для гиперболизации уравнений использован подход Максвелла–Каттанео, обеспечивающий распространение волн с конечными скоростями. В модифицированной модели вместо оригинальных законов Стокса и Фурье использовались их релаксационные аналоги и показано, что при стремлении времен релаксации $\tau_\sigma^{}$ и $\tau_w^{}$ к нулю гиперболизированные уравнения приводятся к классической системе Навье–Стокса негиперболического типа с бесконечными скоростями перемещения вязких и тепловых волн. Отмечено, что рассматриваемая в работе гиперболизированная система уравнений движения вязкого теплопроводного газа инвариантна не только по отношению к преобразованиям Галилея, но и к повороту, поскольку при дифференцировании по времени компонентов тензора вязких напряжений использована производная Яуманна. Для интегрирования уравнений модели применены гибридный метод Годунова (ГМГ) и многомерный узловой метод характеристик. ГМГ предназначен для интегрирования гиперболических систем, в которых имеются как уравнения, записанные в дивергентном виде, так и уравнения, не приводящиеся к таковому (оригинальный метод Годунова применяется только для систем уравнений, представленных в дивергентной форме). При вычислении потоковых переменных на гранях смежных ячеек использован линеаризованный римановский решатель. Для дивергентных уравнений применена конечно-объемная, а для недивергентных — конечноразностная аппроксимация. Для расчета ряда задач в работе также использовался неконсервативный многомерный узловой метод характеристик, который базируется на расщеплении исходной системы уравнений на ряд одномерных подсистем, для решения которых использован одномерный узловой метод характеристик. С помощью описанных численных методов решен ряд модельных одномерных задач о распаде произвольного разрыва, а также рассчитано двумерное течение вязкого газа при взаимодействии ударного скачка с прямоугольной ступенькой, непроницаемой для газа.
Ключевые слова: вязкий теплопроводный газ, гиперболическая модель, релаксационные законы Стокса и Фурье, гибридный метод Годунова, многомерный узловой метод характеристик.
Relaxation model of viscous heat-conducting gas
Computer Research and Modeling, 2022, v. 14, no. 1, pp. 23-43A hyperbolic model of a viscous heat-conducting gas is presented, in which the Maxwell – Cattaneo approach is used to hyperbolize the equations, which provides finite wave propagation velocities. In the modified model, instead of the original Stokes and Fourier laws, their relaxation analogues were used and it is shown that when the relaxation times $\tau_\sigma^{}$ и $\tau_w^{}$ tend to The hyperbolized equations are reduced to zero to the classical Navier – Stokes system of non-hyperbolic type with infinite velocities of viscous and heat waves. It is noted that the hyperbolized system of equations of motion of a viscous heat-conducting gas considered in this paper is invariant not only with respect to the Galilean transformations, but also with respect to rotation, since the Yaumann derivative is used when differentiating the components of the viscous stress tensor in time. To integrate the equations of the model, the hybrid Godunov method (HGM) and the multidimensional nodal method of characteristics were used. The HGM is intended for the integration of hyperbolic systems in which there are equations written both in divergent form and not resulting in such (the original Godunov method is used only for systems of equations presented in divergent form). A linearized solver’s Riemann is used to calculate flow variables on the faces of adjacent cells. For divergent equations, a finitevolume approximation is applied, and for non-divergent equations, a finite-difference approximation is applied. To calculate a number of problems, we also used a non-conservative multidimensional nodal method of characteristics, which is based on splitting the original system of equations into a number of one-dimensional subsystems, for solving which a one-dimensional nodal method of characteristics was used. Using the described numerical methods, a number of one-dimensional problems on the decay of an arbitrary rupture are solved, and a two-dimensional flow of a viscous gas is calculated when a shock jump interacts with a rectangular step that is impermeable to gas.
-
Использование дополнительной информации в задаче обращения усредняющих операторов в пространстве функций
Компьютерные исследования и моделирование, 2011, т. 3, № 3, с. 241-254Решается двойственная задача интегральной геометрии: по заданному оператору усреднения определить класс функций, на котором возможно обращение этого оператора. Эти классы определяются неоднозначно. Дается полное описание таких классов в форме минимальной дополнительной информации, которую надо знать о функции. Исследуется возможность их конструктивного описания, и в случае конечной системы усреднения даются формулы обращения.
Complimentary information using in the task of averaging operators inversion in function space
Computer Research and Modeling, 2011, v. 3, no. 3, pp. 241-254The dual task of integral geometry – to define for a given averaging operator the function class where inversion of that operator is possible – is solved. Those classes are defined ambiguously. Full description of those classes is given in the form of minimal complimentary information necessary to know about the function. The possible to give a constructive description of the class is researched and in the case of a finite averaging system the inversion formulas are given.
-
Априорная поправка в ньютоновских методах оптимизации
Компьютерные исследования и моделирование, 2015, т. 7, № 4, с. 835-863Представлен подход к уменьшению значения нормы поправки в ньютоновских методах оптимизации, основанных на факторизации Холесского, в основе которого лежит интеграция с техникой выбора ведущего элемента алгоритма линейного программирования как метода решения системы уравнений. Исследуются вопросы увеличения численной устойчивости разложения Холесского и метода исключения Гаусса.
Ключевые слова: поправка, алгоритм, ньютоновский метод оптимизации, факторизация Холесского, метод исключения Гаусса, линейное программирование, численная устойчивость, интеграция.
The correction to Newton's methods of optimization
Computer Research and Modeling, 2015, v. 7, no. 4, pp. 835-863Просмотров за год: 1. Цитирований: 6 (РИНЦ).An approach to the decrease of norm of the correction in Newton’s methods of optimization, based on the Cholesky’s factorization is presented, which is based on the integration with the technique of the choice of leading element of algorithm of linear programming as a method of solving the system of equations. We investigate the issues of increasing of the numerical stability of the Cholesky’s decomposition and the Gauss’ method of exception.
-
Новая форма уравнений в моделировании движения тяжелого твердого тела
Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 873-884В динамике тяжелого твердого тела с неподвижной точкой известны различные типы редуцированных уравнений. Поскольку уравнения Эйлера–Пуассона допускают три первых интеграла, то в первом подходе получение новых форм уравнений, как правило, основано на этих интегралах. С их помощью можно систему шести скалярных уравнений преобразовать к системе третьего порядка. Однако редуцированная система при указанном подходе будет иметь особенность в виде радикальных выражений относительно компонент вектора угловой скорости. Это обстоятельство препятствует эффективному применению численных и асимптотических методов исследования решения. Во втором подходе используют различные виды переменных задачи: углы Эйлера, переменные Гамильтона и другие. При таком подходе уравнения Эйлера–Пуассона редуцируются либо к системе дифференциальных уравнений второго порядка, либо к системе, для которой эффективны специальные методы. В статье применен метод нахождения приведенной системы, основанный на введении вспомогательной переменной. Эта переменная характеризует смешанное произведение вектора момента количества движения, вектора вертикали и единичного вектора барицентрической оси тела. Получена система четырех дифференциальных уравнений, два из которых являются линейными дифференциальными уравнениями. Данная система не имеет аналога и не содержит особенностей, что позволяет применять к ней аналитические и численные методы исследования. Указанная форма уравнений применена для анализа специального класса решений в случае, когда центр масс тела принадлежит барицентрической оси. Рассмотрен вариант, при котором сумма квадратов двух компонент вектора кинематического момента относительно небарицентрических осей постоянна. Доказано, что этот вариант имеет место только в решении В.А. Стеклова. Найденная форма уравнений Эйлера–Пуассона может быть применена к исследованию условий существования других классов решений. Определенная перспектива полученных уравнений состоит в записи всех решений, для которых центр масс лежит на барицентрической оси, в переменных данной статьи. Это позволяет провести классификацию решений уравнений Эйлера–Пуассона в зависимости от порядка инвариантных соотношений. Поскольку указанная в статье система уравнений не имеет особенностей, то она может рассматриваться при компьютерном моделировании с помощью численных методов.
A new form of differential equations in modeling of the motion of a heavy solid
Computer Research and Modeling, 2016, v. 8, no. 6, pp. 873-884Просмотров за год: 6.The different types of the reduced equations are known in the dynamics a heavy rigid body with a fixed point. Since the Euler−Poisson’s equations admit the three first integrals, then for the first approach the obtaining new forms of equations are usually based on these integrals. The system of six scalar equations can be transformed to a third-order system with them. However, in indicated approach the reduced system will have a feature as in the form of radical expressions a relatively the components of the angular velocity vector. This fact prevents the effective the effective application of numerical and asymptotic methods of solutions research. In the second approach the different types of variables in a problem are used: Euler’s angles, Hamilton’s variables and other variables. In this approach the Euler−Poisson’s equations are reduced to either the system of second-order differential equations, or the system for which the special methods are effective. In the article the method of finding the reduced system based on the introduction of an auxiliary variable is applied. This variable characterizes the mixed product of the angular momentum vector, the vector of vertical and the unit vector barycentric axis of the body. The system of four differential equations, two of which are linear differential equations was obtained. This system has no analog and does not contain the features that allows to apply to it the analytical and numerical methods. Received form of equations is applied for the analysis of a special class of solutions in the case when the center of mass of the body belongs to the barycentric axis. The variant in which the sum of the squares of the two components of the angular momentum vector with respect to not barycentric axes is constant. It is proved that this variant exists only in the Steklov’s solution. The obtained form of Euler−Poisson’s equations can be used to the investigation of the conditions of existence of other classes of solutions. Certain perspectives obtained equations consists a record of all solutions for which the center of mass is on barycentric axis in the variables of this article. It allows to carry out a classification solutions of Euler−Poisson’s equations depending on the order of invariant relations. Since the equations system specified in the article has no singularities, it can be considered in computer modeling using numerical methods.
-
Расчет гидродинамических воздействий на возвращаемый аппарат при посадке на воду
Компьютерные исследования и моделирование, 2017, т. 9, № 1, с. 37-46В работе представлены результаты моделирования расчетных случаев приводнения возвращаемого аппарата (ВА) пилотируемого транспортного корабля нового поколения в условиях штиля. Рассмотрены случаи посадки ВА с работающими и с выключенными двигательными установками.
Задача приводнения ВА моделировалась в рамках двухфазной постановки с наличием двух несмешивающихся фаз: воды и газа, состоящего из воздуха и продуктов сгорания, поступающих из двигательной установки. Параметры течения в каждой фазе резко отличаются друг от друга по величине плотности и скорости распространения звука. Истечение продуктов сгорания из сопловых установок характеризуется высокими скоростями и давлениями, что усложняет задачу, по сравнению со свободным падением ВА в воду. В расчетах используется упрощение постановки задачи, в котором при взаимодействии горячих струй с водой кипение, испарение и образование водяного пара не учитываются. Газовые струи только нагревают и вытесняют воду.
Для моделирования переноса межфазных границ применяется метод VOF (Volume of fluid), где перенос контактной поверхности описывается конвективным уравнением, а поверхностное натяжение на межфазной границе учитывается давлением Лапласа. Ключевой особенностью метода является расщепление поверхностных ячеек, куда заносятся данные соответствующей фазы. Уравнения для обеих фаз (уравнения неразрывности, импульса, энергии и другие) в поверхностных ячейках решаются совместно.
Моделирование приводнения ВА занимает длительное время, что связанно с особенностями явного расчета уровня границы раздела фаз (свободной поверхности). Для получения качественных результатов свободная поверхность должна быть разрешена большим количеством расчетных ячеек, но при этом за один шаг интегрирования перемещаться не более чем на одну ячейку.
В процессе приземления исследовались гидродинамическое воздействие на ВА, динамика его движения и остойчивость ВА после приводнения, оценивались продольные перегрузки. Полученные данные использовались для анализа нагружения и прочности конструкции корпуса ВА, а также его отдельных элементов.
Ключевые слова: FlowVision, численное моделирование, приводнение, возвращаемый аппарат, метод VOF, двухфазная постановка, перенос межфазных границ, аэродинамические характеристики, динамика движения.
The calculation of hydrodynamic impact on reentry vehicle during splashdown
Computer Research and Modeling, 2017, v. 9, no. 1, pp. 37-46Просмотров за год: 30.The reentry vehicle of the transportation spacecraft that is being created by RSC Energia in regular mode makes soft landing on land surface using a parachute system and thruster devices. But in not standard situations the reentry vehicle also is capable of executing a splashdown. In that case, it becomes important to define the hydrodynamics impact on the reentry vehicle at the moment of the first contact with the surface of water and during submersion into water medium, and to study the dynamics of the vehicle behavior at more recent moments of time.
This article presents results of numerical studies of hydrodynamics forces on the conical vehicle during splashdown, done with the FlowVision software. The paper reviews the cases of the splashdown with inactive solid rocket motors on calm sea and the cases with interactions between rocket jets and the water surface. It presents data on the allocation of pressure on the vehicle in the process of the vehicle immersion into water medium and dynamics of the vehicle behavior after splashdown. The paper also shows flow structures in the area of the reentry vehicle at the different moments of time, and integral forces and moments acting on the vehicle.
For simulation process with moving interphases in the FlowVision software realized the model VOF (volume of fluid). Transfer of the phase boundary is described by the equation of volume fraction of this continuous phase in a computational cell. Transfer contact surface is described by the convection equation, and at the surface tension is taken into account by the Laplace pressure. Key features of the method is the splitting surface cells where data is entered the corresponding phase. Equations for both phases (like the equations of continuity, momentum, energy and others) in the surface cells are accounted jointly.
-
Многомерный узловой метод характеристик для гиперболических систем
Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 19-32Предложен многомерный узловой метод характеристик, предназначенный для интегрирования гиперболических систем, базирующийся на расщеплении исходной системы уравнений на ряд одномерных подсистем, для расчета которых использован одномерный узловой метод характеристик. Приведены расчетные формулы, детально описана методика вычислений применительно к односкоростной модели гетерогенной среды при наличии сил гравитации. Представленный метод применим и к другим гиперболическим системам уравнений. С помощью этого явного, неконсервативного, первого порядка точности метода рассчитан ряд тестовых задач и показано, что в рамках предлагаемого подхода за счет привлечения дополнительных точек в шаблон схемы возможно проведение вычислений с числами Куранта, превышающими единицу. Так, в расчете обтекания трехмерной ступеньки потоком гетерогенной смеси число Куранта равнялось 1.2. В случае применения метода Годунова при решении этой же задачи макси- мальное число Куранта, при котором возможен устойчивый счет, имеет значение 0.13 × 10−2. Еще одна особенность многомерного метода характеристик связана со слабой зависимостью временного шага от размерности задачи, что существенно расширяет возможности этого подхода. С использованием этого метода рассчитан ряд задач, которые ранее считались «тяжелыми» для таких численных методов, как методы Годунова, Куранта – Изаксона – Рис, что связано с тем, что в нем наиболее полно использованы преимущества характеристического представления интегрируемой системы уравнений.
Ключевые слова: гиперболическая модель среды, гиперболические системы, многомерный узловой метод характеристик.
Multidimensional nodal method of characteristics for hyperbolic systems
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 19-32Disclosed is a multidimensional nodal method of characteristics, designed to integrate hyperbolic systems, based on splitting the initial system of equations into a number of one-dimensional subsystems, for which a onedimensional nodal method of characteristics is used. Calculation formulas are given, the calculation method is described in detail in relation to a single-speed model of a heterogeneous medium in the presence of gravity forces. The presented method is applicable to other hyperbolic systems of equations. Using this explicit, nonconservative, first-order accuracy of the method, a number of test tasks are calculated and it is shown that in the framework of the proposed approach, by attracting additional points in the circuit template, it is possible to carry out calculations with Courant numbers exceeding one. So, in the calculation of the flow of the threedimensional step by the flow of a heterogeneous mixture, the Courant number was 1.2. If Godunov’s method is used to solve the same problem, the maximum number of Courant, at which a stable account is possible, is 0.13 × 10-2. Another feature of the multidimensional method of characteristics is the weak dependence of the time step on the dimension of the problem, which significantly expands the possibilities of this approach. Using this method, a number of problems were calculated that were previously considered “heavy” for the numerical methods of Godunov, Courant – Isaacson – Rees, which is due to the fact that it most fully uses the advantages of the characteristic representation of the system of equations.
-
Разностный метод решения уравнения конвекции–диффузии с неклассическим граничным условием в многомерной области
Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 559-579В работе изучается многомерное уравнение конвекции-диффузии с переменными коэффициентами и неклассическим граничным условием. Рассмотрены два случая: в первом случае первое граничное условие содержит интеграл от неизвестной функции по переменной интегрирования $x_\alpha^{}$, а во втором случае — интеграл от неизвестной функции по переменной интегрирования $\tau$, обозначающий эффект памяти. Подобные задачи возникают при изучении переноса примеси вдоль русла рек. Для приближенного решения поставленной задачи предложена эффективная в плане экономичности, устойчивости и сходимости разностная схема — локально-одномерная разностная схема А.А. Самарского с порядком аппроксимации~$O(h^2+\tau)$. Ввиду того что уравнение содержит первую производную от неизвестной функции по пространственной переменной $x_\alpha^{}$, для повышения порядка точности локально-одномерной схемы используется известный метод, предложенный А.А. Самарским при построении монотонной схемы второго порядка точности по $h_\alpha^{}$ для уравнения параболического типа общего вида, содержащего односторонние производные, учитывающие знак $r_\alpha^{}(x,\,t)$. Для повышения до второго порядка точности по $h_\alpha^{}$ краевых условий третьего рода воспользовались уравнением в предположении, что оно справедливо и на границах. Исследование единственности и устойчивости решения проводилось с помощью метода энергетических неравенств. Получены априорные оценки решения разностной задачи в $L_2^{}$-норме, откуда следуют единственность решения, непрерывная и равномерная зависимость решения разностной задачи от входных данных, а также сходимость решения локально-одномерной разностной схемы к решению исходной дифференциальной задачи в $L_2^{}$-норме со скоростью, равной порядку аппроксимации разностной схемы. Для двумерной задачи построен алгоритм численного решения, проведены численные расчеты тестовых примеров, иллюстрирующие полученные в работе теоретические результаты.
Ключевые слова: параболическое уравнение, многомерное уравнение, разностные схемы, локально-одномерная схема, априорная оценка, устойчивость, сходимость.
A difference method for solving the convection–diffusion equation with a nonclassical boundary condition in a multidimensional domain
Computer Research and Modeling, 2022, v. 14, no. 3, pp. 559-579The paper studies a multidimensional convection-diffusion equation with variable coefficients and a nonclassical boundary condition. Two cases are considered: in the first case, the first boundary condition contains the integral of the unknown function with respect to the integration variable $x_\alpha^{}$, and in the second case, the integral of the unknown function with respect to the integration variable $\tau$, denoting the memory effect. Similar problems arise when studying the transport of impurities along the riverbed. For an approximate solution of the problem posed, a locally one-dimensional difference scheme by A.A. Samarskii with order of approximation $O(h^2+\tau)$. In view of the fact that the equation contains the first derivative of the unknown function with respect to the spatial variable $x_\alpha^{}$, the wellknown method proposed by A.A. Samarskii in constructing a monotonic scheme of the second order of accuracy in $h_\alpha^{}$ for a general parabolic type equation containing one-sided derivatives taking into account the sign of $r_\alpha^{}(x,t)$. To increase the boundary conditions of the third kind to the second order of accuracy in $h_\alpha^{}$, we used the equation, on the assumption that it is also valid at the boundaries. The study of the uniqueness and stability of the solution was carried out using the method of energy inequalities. A priori estimates are obtained for the solution of the difference problem in the $L_2^{}$-norm, which implies the uniqueness of the solution, the continuous and uniform dependence of the solution of the difference problem on the input data, and the convergence of the solution of the locally onedimensional difference scheme to the solution of the original differential problem in the $L_2^{}$-norm with speed equal to the order of approximation of the difference scheme. For a two-dimensional problem, a numerical solution algorithm is constructed.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"