Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Корректные условия на границе, разделяющей подобласти
Компьютерные исследования и моделирование, 2014, т. 6, № 3, с. 347-356В работе изложена постановка и решение задачи о корректных условиях на границе, разделяющей подобласти, для гиперболических систем линейных уравнений. Алгоритм решения продемонстрирован на примере системы уравнений упругой динамики для двух пространственных переменных. Приведенный подход легко распространяется на системы линейных гиперболических уравнений первого порядка с произвольным числом пространственных переменных.
Ключевые слова: уравнения упругой динамики, задача Римана, характеристики, инварианты Римана, плоские волны.
Correct conditions on the boundary separating subdomains
Computer Research and Modeling, 2014, v. 6, no. 3, pp. 347-356Просмотров за год: 2. Цитирований: 2 (РИНЦ).This paper presents definition and solution problem of correct conditions on the boundary, separating subdomains for hyperbolic linear equation systems. The solution algorithm is demonstrated by means of an example system of elastodynamic equations for two spatial variables. Stated approach can be easily expanded on systems of first-order linear hyperbolic equations with random number of spatial variables.
-
The 3rd BRICS Mathematics Conference
Компьютерные исследования и моделирование, 2019, т. 11, № 6, с. 1015-1016The 3rd BRICS Mathematics Conference
Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1015-1016 -
Алгоритм численного интегрирования потенциально-потоковых уравнений в сосредоточенных параметрах с контролем корректности приближенного решения
Компьютерные исследования и моделирование, 2014, т. 6, № 4, с. 479-493Данная работа посвящена разработке алгоритма численного интегрирования системы дифференциальных уравнений потенциально-потокового метода моделирования неравновесных процессов. Этот метод был разработан автором в опубликованных им ранее работах. В настоящей работе рассмотрение ограничивается системами с сосредоточенными параметрами. Также ранее была разработана автором методика анализа корректности приближенного решения системы потенциально-потоковых уравнений для систем в сосредоточенных параметрах. Целью настоящей статьи является объединение этой методики с современными численными методами интегрирования систем обыкновенных дифференциальных уравнений и разработка методики численного интегрирования систем уравнений потенциально-потокового метода, позволяющей гарантировать корректность приближенного решения.
Ключевые слова: потенциально-потоковый метод, уравнения потенциально-потокового метода, численное интегрирование уравнений, анализ корректности приближенного решения.
Numerical integration algorithm potentially-streaming equations in lumped parameters to control the correctness of the approximate solution
Computer Research and Modeling, 2014, v. 6, no. 4, pp. 479-493Просмотров за год: 4. Цитирований: 3 (РИНЦ).This work is devoted to development of an algorithm for numerical integration of differential equations potentially-streaming method simulation of non-equilibrium processes. This method was developed by the author in his earlier published works. In this paper, consideration is limited to systems with lumped parameters. Also previously developed method for analyzing the correctness of the author of the approximate solution of the system potentially-streaming equations for systems in lumped parameters. The purpose of this article is to combine this technique with modern numerical methods for integrating systems of ordinary differential equations and the development of methods of numerical integration of systems of equations potentially-streaming method that allows to guarantee the correctness of the approximate solution.
-
Неявный итерационный полинейный рекуррентный метод в применении к решению задач динамики несжимаемой вязкой жидкости
Компьютерные исследования и моделирование, 2015, т. 7, № 1, с. 35-50В работе рассматриваются результаты применения неявного итерационного полинейного рекуррентного метода решения систем разностных эллиптических уравнений, возникающих при численном моделировании динамики несжимаемой вязкой жидкости. Исследование проводится на примере решения задачи о стационарном течении в плоской каверне с подвижной крышкой, сформулированной в естественных переменных ($u, \,v, \,p$) при больших значениях чисел Re (до 20 000) и сеточных разрешений (до 2049×2049). Демонстрируется высокая эффективность метода при расчете полей поправки давления. Анализируются проблемы решения задачи при больших числах Re.
The implicit line-by-line recurrence method in application to the solution of problems of incompressible viscous fluid dynamics
Computer Research and Modeling, 2015, v. 7, no. 1, pp. 35-50Просмотров за год: 3. Цитирований: 3 (РИНЦ).In the paper the results of applying the implicit line-by-line recurrence method for solving of systems of elliptic difference equations, arising, in particular, at numerical simulation of dynamics of incompressible viscous fluid are considered. Research is conducted on the example of the problem about a steady-state two-dimensional lid-driven cavity flow formulated in primitive variables ($u,\, v,\, p$) for large Re (up to 20 000) and grids (up to 2049×2049). High efficiency of the method at calculation of a pressure correction fields is demonstrated. The difficulties of constructing a solution of the problem for large Rе are analyzed.
-
Прямые мультипликативные методы для разреженных матриц. Линейное программирование
Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 143-165Мультипликативные методы для разреженных матриц являются наиболее приспособленными для снижения трудоемкости операций решения систем линейных уравнений, выполняемых на каждой итерации симплекс-метода. Матрицы ограничений в этих задачах слабо заполнены ненулевыми элементами, что позволяет получать мультипликаторы, главные столбцы которых также разрежены, а операция умножения вектора на мультипликатор по трудоемкости пропорциональна числу ненулевых элементов этого мультипликатора. Кроме того, при переходе к смежному базису мультипликативное представление достаточно легко корректируется. Для повышения эффективности таких методов требуется уменьшение заполненности мультипликативного представления ненулевыми элементами. Однако на каждой итерации алгоритма к последовательности мультипликаторов добавляется еще один. А трудоемкость умножения, которая линейно зависит от длины последовательности, растет. Поэтому требуется выполнять время от времени перевычисление обратной матрицы, получая ее из единичной. Однако в целом проблема не решается. Кроме того, набор мультипликаторов представляет собой последовательность структур, причем размер этой последовательности неудобно велик и точно неизвестен. Мультипликативные методы не учитывают фактора высокой степени разреженности исходных матриц и ограничения-равенства, требуют определения первоначального базисного допустимого решения задачи и, как следствие, не допускают сокращения размерности задачи линейного программирования и регулярной процедуры сжатия — уменьшения размерности мультипликаторов и исключения ненулевых элементов из всех главных столбцов мультипликаторов, полученных на предыдущих итерациях. Таким образом, разработка численных методов решения задач линейного программирования, позволяющих преодолеть или существенно ослабить недостатки схем реализации симплекс-метода, относится к актуальным проблемам вычислительной математики.
В данной работе рассмотрен подход к построению численно устойчивых прямых мультипликативных методов решения задач линейного программирования, учитывающих разреженность матриц, представленных в упакованном виде. Преимущество подхода состоит в уменьшении размерности и минимизации заполнения главных строк мультипликаторов без потери точности результатов, причем изменения в позиции очередной обрабатываемой строки матрицы не вносятся, что позволяет использовать статические форматы хранения данных.
В качестве прямого продолжения данной работы в основу построения прямого мультипликативного алгоритма задания направления спуска в ньютоновских методах безусловной оптимизации предлагается положить модификацию прямого мультипликативного метода линейного программирования путем интеграции одной из существующих техник построения существенно положительно-определенной матрицы вторых производных.
Ключевые слова: численно устойчивые прямые мультипликативные методы, линейное программирование, формат хранения разреженных матриц, параллельное выполнение матричных операций без распаковывания, минимизация заполнения главных строк мультипликаторов, разреженные матрицы.
Direct multiplicative methods for sparse matrices. Linear programming
Computer Research and Modeling, 2017, v. 9, no. 2, pp. 143-165Просмотров за год: 10. Цитирований: 2 (РИНЦ).Multiplicative methods for sparse matrices are best suited to reduce the complexity of operations solving systems of linear equations performed on each iteration of the simplex method. The matrix of constraints in these problems of sparsely populated nonzero elements, which allows to obtain the multipliers, the main columns which are also sparse, and the operation of multiplication of a vector by a multiplier according to the complexity proportional to the number of nonzero elements of this multiplier. In addition, the transition to the adjacent basis multiplier representation quite easily corrected. To improve the efficiency of such methods requires a decrease in occupancy multiplicative representation of the nonzero elements. However, at each iteration of the algorithm to the sequence of multipliers added another. As the complexity of multiplication grows and linearly depends on the length of the sequence. So you want to run from time to time the recalculation of inverse matrix, getting it from the unit. Overall, however, the problem is not solved. In addition, the set of multipliers is a sequence of structures, and the size of this sequence is inconvenient is large and not precisely known. Multiplicative methods do not take into account the factors of the high degree of sparseness of the original matrices and constraints of equality, require the determination of initial basic feasible solution of the problem and, consequently, do not allow to reduce the dimensionality of a linear programming problem and the regular procedure of compression — dimensionality reduction of multipliers and exceptions of the nonzero elements from all the main columns of multipliers obtained in previous iterations. Thus, the development of numerical methods for the solution of linear programming problems, which allows to overcome or substantially reduce the shortcomings of the schemes implementation of the simplex method, refers to the current problems of computational mathematics.
In this paper, the approach to the construction of numerically stable direct multiplier methods for solving problems in linear programming, taking into account sparseness of matrices, presented in packaged form. The advantage of the approach is to reduce dimensionality and minimize filling of the main rows of multipliers without compromising accuracy of the results and changes in the position of the next processed row of the matrix are made that allows you to use static data storage formats.
As a direct continuation of this work is the basis for constructing a direct multiplicative algorithm set the direction of descent in the Newton methods for unconstrained optimization is proposed to put a modification of the direct multiplier method, linear programming by integrating one of the existing design techniques significantly positive definite matrix of the second derivatives.
-
О сходимости неявного итерационного полинейного рекуррентного метода решения систем разностных эллиптических уравнений
Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 857-880Работа посвящена теоретическому обоснованию неявного итерационного полинейного рекуррентного метода решения систем разностных уравнений, которые возникают при аппроксимации двумерных эллиптических дифференциальных уравнений на регулярной сетке. Высокая эффективность этого метода практически подтверждена при решении сложных тестовых задач, а также задач течения и теплообмена вязкой несжимаемой жидкости. Однако теоретические положения, объясняющие высокую скорость сходимости и устойчивость метода, до сих пор оставались за кадром внимания, что и послужило причиной проведения настоящего исследования. В работе подробно излагается процедура эквивалентных и приближенных преобразований исходной системы линейных алгебраических уравнений (СЛАУ) как в матрично-векторной форме, так и виде расчетных формул метода. При этом для наглядности изложения материала ключевые моменты преобразований иллюстрируются схемами изменения разностных шаблонов, отвечающих преобразованным уравнениям. Конечная цель процедуры преобразований — получение канонической формы записи метода, из которого следует его корректность в случае сходимости решения. На основе анализа структур и элементных составов матричных операторов проводится оценка их норм и, соответственно, доказывается сходимость метода для произвольных начальных векторов.
В специальном случае слабых ограничений на искомое решение производится оценка нормы оператора перехода. Показывается, что с ростом размерности матрицы этого оператора величина его нормы уменьшается пропорционально квадрату (или кубу, в зависимости от версии метода) шага сеточного разбиения области решения задачи. С помощью простых оценок получено необходимое условие устойчивости метода. Также даются рекомендации относительно выбора по порядку величины оптимального итерационного параметра компенсации. Теоретические выводы проиллюстрированы результатами решения тестовых задач. Показано, что при увеличении размерности сеточного разбиения области решения количество итераций, необходимых для достижения заданной точности решения, при прочих равных условиях уменьшается. Также продемонстрировано, что если слабые ограничения на решение нарушены при выборе его начального приближения, то в полном соответствии с полученными теоретическими результатами скорость сходимости метода существенно уменьшается.
Ключевые слова: система линейных алгебраических уравнений, итерационный метод решения, сходимость метода.
On the convergence of the implicit iterative line-by-line recurrence method for solving difference elliptical equations
Computer Research and Modeling, 2017, v. 9, no. 6, pp. 857-880Просмотров за год: 15. Цитирований: 1 (РИНЦ).In the article a theory of the implicit iterative line-by-line recurrence method for solving the systems of finite-difference equations which arise as a result of approximation of the two-dimensional elliptic differential equations on a regular grid is stated. On the one hand, the high effectiveness of the method has confirmed in practice. Some complex test problems, as well as several problems of fluid flow and heat transfer of a viscous incompressible liquid, have solved with its use. On the other hand, the theoretical provisions that explain the high convergence rate of the method and its stability are not yet presented in the literature. This fact is the reason for the present investigation. In the paper, the procedure of equivalent and approximate transformations of the initial system of linear algebraic equations (SLAE) is described in detail. The transformations are presented in a matrix-vector form, as well as in the form of the computational formulas of the method. The key points of the transformations are illustrated by schemes of changing of the difference stencils that correspond to the transformed equations. The canonical form of the method is the goal of the transformation procedure. The correctness of the method follows from the canonical form in the case of the solution convergence. The estimation of norms of the matrix operators is carried out on the basis of analysis of structures and element sets of the corresponding matrices. As a result, the convergence of the method is proved for arbitrary initial vectors of the solution of the problem.
The norm of the transition matrix operator is estimated in the special case of weak restrictions on a desired solution. It is shown, that the value of this norm decreases proportionally to the second power (or third degree, it depends on the version of the method) of the grid step of the problem solution area in the case of transition matrix order increases. The necessary condition of the method stability is obtained by means of simple estimates of the vector of an approximate solution. Also, the estimate in order of magnitude of the optimum iterative compensation parameter is given. Theoretical conclusions are illustrated by using the solutions of the test problems. It is shown, that the number of the iterations required to achieve a given accuracy of the solution decreases if a grid size of the solution area increases. It is also demonstrated that if the weak restrictions on solution are violated in the choice of the initial approximation of the solution, then the rate of convergence of the method decreases essentially in full accordance with the deduced theoretical results.
-
Методы решения парадокса Браесса на транспортной сети с автономным транспортом
Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 281-294Дороги — ресурс, который может использоваться как водителями, так и автономными транспортными средствами. Ежегодно количество транспортных средств увеличивается, из-за чего каждое отдельно взятое транспортное средство тратит всё больше времени в пробках, тем самым увеличивая суммарные временные затраты. При планировании новой дороги ключевой задачей становится сокращение времени в пути. Оптимизация транспортных сетей в настоящее время часто происходит с помощью добавления новых связующих дорог между высоконагруженными частями трасс. Парадокс Браесса заключается в том, что построение нового ребра дорожной сети приводит к увеличению времени в пути для каждого транспортного средства в сети. Целью данной статьи является предложение различных разрешений парадокса Браесса при рассмотрении автономных транспортных средств в качестве участников дорожного движения. Один из вариантов топологического решения транспортной задачи — использование искусственных ограничителей трафика. Как пример таких ограничителей статья рассматривает введение выделенных полос, доступных только для определенных видов транспорта. Выделенные полосы занимают особое место в транспортной сети и могут обслуживать поток по-разному. В данной статье рассмотрены наиболее часто встречающиеся случаи распределения трафика на сети из двух дорог, приведены аналитический и численный методы оптимизации модели и представлена модель оптимального распределения трафика, которая рассматривает различные варианты выделения полос на изолированной транспортной сети. В результате проведенных исследований было обнаружено, что введение выделенных полос решает парадокс Браесса и приводит к уменьшению общего времени в пути. Решения приведены как для искусственно смоделированной сети, так и на реальных примерах. В статье представлен алгоритм моделирования трафика на браессовской сети и приведено обоснование его корректности на реальном примере.
Methods for resolving the Braess paradox in the presence of autonomous vehicles
Computer Research and Modeling, 2021, v. 13, no. 2, pp. 281-294Roads are a shared resource which can be used either by drivers and autonomous vehicles. Since the total number of vehicles increases annually, each considered vehicle spends more time in traffic jams, and thus the total travel time prolongs. The main purpose while planning the road system is to reduce the time spent on traveling. The optimization of transportation networks is a current goal, thus the formation of traffic flows by creating certain ligaments of the roads is of high importance. The Braess paradox states the existence of a network where the construction of a new edge leads to the increase of traveling time. The objective of this paper is to propose various solutions to the Braess paradox in the presence of autonomous vehicles. One of the methods of solving transportation topology problems is to introduce artificial restrictions on traffic. As an example of such restrictions, this article considers designated lanes which are available only for a certain type of vehicles. Designated lanes have their own location in the network and operating conditions. This article observes the most common two-roads traffic situations, analyzes them using analytical and numerical methods and presents the model of optimal traffic flow distribution, which considers different ways of lanes designation on isolated transportation networks. It was found that the modeling of designated lanes eliminates Braess’ paradox and optimizes the total traveling time. The solutions were shown on artificial networks and on the real-life example. A modeling algorithm for Braess network was proposed and its correctness was verified using the real-life example.
-
Численное решение двумерного нелинейного уравнения теплопроводности с использованием радиальных базисных функций
Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 9-22Работа посвящена численному решению задачи о движении тепловой волны для вырождающегося нелинейного уравнения второго порядка параболического типа с источником. Нелинейность уравнения обусловлена степенной зависимостью коэффициента теплопроводности от температуры. Рассматривается задача для случая двух пространственных переменных при краевом условии, задающем закон движения фронта тепловой волны. Предложен новый алгоритм решения на основе разложения по радиальным базисным функциям и метода граничных элементов. Решение строится по шагам по времени с разностной аппроксимацией по времени. На каждом шаге решается краевая задача для уравнения Пуассона, соответствующего исходному уравнению для фиксированного момента времени. Решение такой задачи строится итерационно в виде суммы частного решения, удовлетворяющего неоднородному уравнению, и решения соответствующего однородного уравнения, удовлетворяющего граничным условиям. Однородное уравнение решается методом граничных элементов, частное решение ищется методом коллокаций с помощью разложения неоднородности по радиальным базисным функциям. Вычислительный алгоритм оптимизирован за счет распараллеливания вычислений. Алгоритм реализован в виде программы, написанной на языке программирования С++. Организация параллельных вычислений построена с использованием открытого стандарта OpenCL, что позволило запускать одну и ту же программу, выполняющую параллельные вычисления, как на центральных многоядерных процессорах, так и на графических процессорах. Для оценки эффективности предложенного метода решения и корректности разработанной вычислительной технологии были решены тестовые примеры. Результаты расчетов сравнивались как с известными точными решениями, так и с данными, полученными авторами ранее в других работах. Проведена оценка точности решений и времени проведения расчетов. Проведен анализ эффективности использования различных систем радиальных базисных функций для решения задач рассматриваемого типа. Определена наиболее подходящая система функций. Проведенный комплексный вычислительный эксперимент показал более высокую точность расчетов по предложенному новому алгоритму по сравнению с разработанным ранее.
Ключевые слова: нелинейное уравнение параболического типа с источником, уравнение теплопроводности, метод граничных элементов, радиальные базисные функции, метод двойственной взаимности, метод коллокаций.
Numerical solution to a two-dimensional nonlinear heat equation using radial basis functions
Computer Research and Modeling, 2022, v. 14, no. 1, pp. 9-22The paper presents a numerical solution to the heat wave motion problem for a degenerate second-order nonlinear parabolic equation with a source term. The nonlinearity is conditioned by the power dependence of the heat conduction coefficient on temperature. The problem for the case of two spatial variables is considered with the boundary condition specifying the heat wave motion law. A new solution algorithm based on an expansion in radial basis functions and the boundary element method is proposed. The solution is constructed stepwise in time with finite difference time approximation. At each time step, a boundary value problem for the Poisson equation corresponding to the original equation at a fixed time is solved. The solution to this problem is constructed iteratively as the sum of a particular solution to the nonhomogeneous equation and a solution to the corresponding homogeneous equation satisfying the boundary conditions. The homogeneous equation is solved by the boundary element method. The particular solution is sought by the collocation method using inhomogeneity expansion in radial basis functions. The calculation algorithm is optimized by parallelizing the computations. The algorithm is implemented as a program written in the C++ language. The parallel computations are organized by using the OpenCL standard, and this allows one to run the same parallel code either on multi-core CPUs or on graphic CPUs. Test cases are solved to evaluate the effectiveness of the proposed solution method and the correctness of the developed computational technique. The calculation results are compared with known exact solutions, as well as with the results we obtained earlier. The accuracy of the solutions and the calculation time are estimated. The effectiveness of using various systems of radial basis functions to solve the problems under study is analyzed. The most suitable system of functions is selected. The implemented complex computational experiment shows higher calculation accuracy of the proposed new algorithm than that of the previously developed one.
-
Моделирование турбулентных сжимаемых течений в программном комплексе FlowVision
Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 805-825В работе обсуждается возможность моделирования турбулентных сжимаемых течений газа с использованием моделей турбулентности $k-\varepsilon$ стандартная (KES), $k-\varepsilon$ FlowVision (KEFV) и SST $k-\omega$. Представлена новая версия модели турбулентности KEFV. Показаны результаты ее тестирования. Проведено численное исследование истечения сверхзвуковой перерасширенной струи из конического сопла в безграничное пространство. Результаты сравниваются с экспериментальными данными. Демонстрируется зависимость результатов от сетки. Демонстрируется зависимость результатов от турбулентности, задаваемой на входе в сопло. Делается вывод о том, что в двухпараметрических моделях турбулентности необходимо учитывать сжимаемость. Для этого подходит простой способ, предложенный Вилкоксом в 1994 г. В результате область применимости трех указанных двухпараметрических моделей заметно расширяется. Предлагаются конкретные значения констант, управляющих учетом сжимаемости в подходе Вилкокса. Эти значения рекомендуется задавать в моделях KES, KEFV и SST при моделировании сжимаемых течений.
Дополнительно рассмотрен вопрос о том, как получать правильные характеристики сверхзвукового турбулентного течения с использованием двухпараметрических моделей турбулентности. Расчеты на разных сетках показали, что при задании ламинарного потока на входе в сопло и пристеночных функций на его поверхностях ядро потока остается ламинарным вплоть до 5-й бочки. Для получения правильных характеристик нужно либо на входе в расчетную область задавать два параметра, характеризующие турбулентность втекающего потока, либо задавать «затравочную» турбулентность в ограниченной области на выходе из сопла, охватывающей зону предполагаемого ламинарно-турбулентного перехода. Последняя возможность реализована в модели KEFV.
Ключевые слова: сопло, сверхзвуковая струя, турбулентное течение, модели турбулентности, пристеночные функции, ламинарно-турбулентный переход, численное решение, сеточная сходимость.
Simulation of turbulent compressible flows in the FlowVision software
Computer Research and Modeling, 2023, v. 15, no. 4, pp. 805-825Simulation of turbulent compressible gas flows using turbulence models $k-\varepsilon$ standard (KES), $k-\varepsilon$ FlowVision (KEFV) and SST $k-\omega$ is discussed in the given article. A new version of turbulence model KEFV is presented. The results of its testing are shown. Numerical investigation of the discharge of an over-expanded jet from a conic nozzle into unlimited space is performed. The results are compared against experimental data. The dependence of the results on computational mesh is demonstrated. The dependence of the results on turbulence specified at the nozzle inlet is demonstrated. The conclusion is drawn about necessity to allow for compressibility in two-parametric turbulence models. The simple method proposed by Wilcox in 1994 suits well for this purpose. As a result, the range of applicability of the three aforementioned two-parametric turbulence models is essentially extended. Particular values of the constants responsible for the account of compressibility in the Wilcox approach are proposed. It is recommended to specify these values in simulations of compressible flows with use of models KES, KEFV, and SST.
In addition, the question how to obtain correct characteristics of supersonic turbulent flows using two-parametric turbulence models is considered. The calculations on different grids have shown that specifying a laminar flow at the inlet to the nozzle and wall functions at its surfaces, one obtains the laminar core of the flow up to the fifth Mach disk. In order to obtain correct flow characteristics, it is necessary either to specify two parameters characterizing turbulence of the inflowing gas, or to set a “starting” turbulence in a limited volume enveloping the region of presumable laminar-turbulent transition next to the exit from the nozzle. The latter possibility is implemented in model KEFV.
-
Оптимизация стратегии геометрического анализа в автоматизированных системах проектирования
Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 825-840Автоматизация проектирования процессов сборки сложных изделий — это важная и сложная научно-техническая проблема. Последовательность сборки и содержание сборочных операций в значительной степени зависят от механической структуры и геометрических свойств изделия. Приведен обзор методов геометрического моделирования, которые применяются в современных системах автоматизированного проектирования. Моделирование геометрических препятствий при сборке методами анализа столкновений, планирования перемещений и виртуальной реальности требует очень больших вычислительных ресурсов. Комбинаторные методы дают только слабые необходимые условия геометрической разрешимости. Рассматривается важная задача минимизации числа геометрических проверок при синтезе сборочных операций и процессов. Формализация этой задачи основана на гиперграфовой модели механической структуры изделия. Эта модель дает корректное математическое описание когерентных и секвенциальных сборочных операций, которые доминируют в современном дискретном производстве. Введено ключевое понятие геометрической ситуации. Это такая конфигурация деталей при сборке, которая требует проверки на свободу от препятствий, и эта проверка дает интерпретируемые результаты. Предложено математическое описание геометрической наследственности при сборке сложных изделий. Аксиомы наследственности позволяют распространить результаты проверки одной геометрической ситуации на множество других ситуаций. Задача минимизации числа геометрических тестов поставлена как неантагонистическая игра ЛПР и природы, в которой требуется окрасить вершины упорядоченного множества в два цвета. Вершины представляют собой геометрические ситуации, а цвет — это метафора результата проверки на свободу от коллизий. Ход ЛПР заключается в выборе неокрашенной вершины, ответ природы — это цвет вершины, который определяется по результатам моделирования данной геометрической ситуации. В игре требуется окрасить упорядоченное множество за минимальное число ходов. Обсуждается проектная ситуация, в которой ЛПР принимает решение в условиях риска. Предложен способ подсчета вероятностей окраски вершин упорядоченного множества. Описаны основные чистые стратегии рационального поведения в данной игре. Разработан оригинальный синтетический критерий принятия рациональных решений в условиях риска. Предложены две эвристики, которые можно использовать для окрашивания упорядоченных множеств большой мощности и сложной структуры.
Ключевые слова: сборка, последовательность сборки, CAAP-система, САПР, анализ геометрических препятствий.
Optimization of geometric analysis strategy in CAD-systems
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 825-840Computer-aided assembly planning for complex products is an important engineering and scientific problem. The assembly sequence and content of assembly operations largely depend on the mechanical structure and geometric properties of a product. An overview of geometric modeling methods that are used in modern computer-aided design systems is provided. Modeling geometric obstacles in assembly using collision detection, motion planning, and virtual reality is very computationally intensive. Combinatorial methods provide only weak necessary conditions for geometric reasoning. The important problem of minimizing the number of geometric tests during the synthesis of assembly operations and processes is considered. A formalization of this problem is based on a hypergraph model of the mechanical structure of the product. This model provides a correct mathematical description of coherent and sequential assembly operations. The key concept of the geometric situation is introduced. This is a configuration of product parts that requires analysis for freedom from obstacles and this analysis gives interpretable results. A mathematical description of geometric heredity during the assembly of complex products is proposed. Two axioms of heredity allow us to extend the results of testing one geometric situation to many other situations. The problem of minimizing the number of geometric tests is posed as a non-antagonistic game between decision maker and nature, in which it is required to color the vertices of an ordered set in two colors. The vertices represent geometric situations, and the color is a metaphor for the result of a collision-free test. The decision maker’s move is to select an uncolored vertex; nature’s answer is its color. The game requires you to color an ordered set in a minimum number of moves by decision maker. The project situation in which the decision maker makes a decision under risk conditions is discussed. A method for calculating the probabilities of coloring the vertices of an ordered set is proposed. The basic pure strategies of rational behavior in this game are described. An original synthetic criterion for making rational decisions under risk conditions has been developed. Two heuristics are proposed that can be used to color ordered sets of high cardinality and complex structure.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"