Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'fractal modeling':
Найдено статей: 9
  1. В работе описывается свободно распространяемая прикладная программа для исследований в области голоморфной динамики на основе вычислительных возможностей среды MATLAB. Программа позволяет строить не только одиночные комплекснозначные отображения, но и их коллективы как линейно связанные, на квадратной или гексагональной решетке. В первом случае строятся аналоги множества Жюлиа (в виде точек убегания с цветовой индикацией скорости убегания), Фату (с выделением хаотической динамики) и множества Мандельброта, порожденного одним из двух свободных параметров. Во втором случае рассматривается только динамика клеточного автомата с комплекснозначным состоянием ячеек и всеми коэффициентами в локальной функции перехода. Абстрактность объектно-ориентированного программирования позволяет объединить оба типа расчета в рамках одной программы, описывающей итеративную динамику одного объекта.

    Для формы поля, начальных условий, шаблона окрестности и особенностей окрестности у граничных ячеек предусмотрены опции выбора. Вид отображения может быть задан регулярным для интерпретатора MATLAB выражением. В статье приводятся некоторые UML-диаграммы, краткое введение в пользовательский интерфейс и ряд примеров.

    В качестве рабочих иллюстраций, содержащих новое научное знание, были рассмотрены следующие случаи:

    1) дробно-линейное отображение вида $Az^{n} +B/z^{n} $, для которого случаи $n=2$, $4$, $n>1$, известны. На портрете множества Фату привлекают внимание характерные (для классического квадратичного отображения) фигурки <<пряничных человечков>>, показывающие короткопериодические режимы, находящиеся в море компоненты условно хаотической динамики;

    2) у множества Мандельброта при нестандартном положении параметра в показателе степени $z(t+1)\Leftarrow z(t)^{\mu } $ на эскизных расчетах обнаруживаются некие зубчатые структуры и облака точек, напоминающие пыль Кантора, не являющиеся букетами Кантора, характерными для экспоненциального отображения. В дальнейшем требуется детализация этих объектов со сложной топологией.

    Matyushkin I.V., Rubis P.D., Zapletina M.A.
    Experimental study of the dynamics of single and connected in a lattice complex-valued mappings: the architecture and interface of author’s software for modeling
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1101-1124

    The paper describes a free software for research in the field of holomorphic dynamics based on the computational capabilities of the MATLAB environment. The software allows constructing not only single complex-valued mappings, but also their collectives as linearly connected, on a square or hexagonal lattice. In the first case, analogs of the Julia set (in the form of escaping points with color indication of the escape velocity), Fatou (with chaotic dynamics highlighting), and the Mandelbrot set generated by one of two free parameters are constructed. In the second case, only the dynamics of a cellular automaton with a complex-valued state of the cells and of all the coefficients in the local transition function is considered. The abstract nature of object-oriented programming makes it possible to combine both types of calculations within a single program that describes the iterated dynamics of one object.

    The presented software provides a set of options for the field shape, initial conditions, neighborhood template, and boundary cells neighborhood features. The mapping display type can be specified by a regular expression for the MATLAB interpreter. This paper provides some UML diagrams, a short introduction to the user interface, and some examples.

    The following cases are considered as example illustrations containing new scientific knowledge:

    1) a linear fractional mapping in the form $Az^{n} +B/z^{n} $, for which the cases $n=2$, $4$, $n>1$, are known. In the portrait of the Fatou set, attention is drawn to the characteristic (for the classical quadratic mapping) figures of <>, showing short-period regimes, components of conventionally chaotic dynamics in the sea;

    2) for the Mandelbrot set with a non-standard position of the parameter in the exponent $z(t+1)\Leftarrow z(t)^{\mu } $ sketch calculations reveal some jagged structures and point clouds resembling Cantor's dust, which are not Cantor's bouquets that are characteristic for exponential mapping. Further detailing of these objects with complex topology is required.

  2. Паровик Р.И.
    Математическое моделирование эредитарного осциллятора
    Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 1001-1021

    В работе рассматривается эредитарный осциллятор, который характеризуется осцилляционным уравнением с производными дробных порядков $\beta$ и $\gamma$ в смысле Герасимова–Капуто. С помощью преобразования Лапласа были получены аналитические решения и функция Грина, которые определяются через специальные функции типа Миттаг-Леффлера и обобщенной функции Райта. Доказано, что при фиксированных значениях $\beta = 2$ и $\gamma = 1$ найденное решение переходит в классическое решение для гармонического осциллятора. Согласно полученным решениям были построены расчетные кривые и фазовые траектории эредитарного колебательного процесса. Установлено, что в случае внешнего периодического воздействия на эредитарный осциллятор могут возникать эффекты, присущие классическим нелинейным осцилляторам.

    Parovik R.I.
    Mathematical modeling of oscillator hereditarity
    Computer Research and Modeling, 2015, v. 7, no. 5, pp. 1001-1021

    The paper considers hereditarity oscillator which is characterized by oscillation equation with derivatives of fractional order $\beta$ and $\gamma$, which are defined in terms of Gerasimova-Caputo. Using Laplace transform were obtained analytical solutions and the Green’s function, which are determined through special functions of Mittag-Leffler and Wright generalized function. It is proved that for fixed values of $\beta = 2$ and $\gamma = 1$, the solution found becomes the classical solution for a harmonic oscillator. According to the obtained solutions were built calculated curves and the phase trajectories hereditarity oscillatory process. It was found that in the case of an external periodic influence on hereditarity oscillator may occur effects inherent in classical nonlinear oscillators.

    Просмотров за год: 4. Цитирований: 12 (РИНЦ).
  3. Новикова О.Б.
    Фрактальный сплайн как модель фрактальных функций для генерирования фрактальных сигналов
    Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 583-587

    В работе представлен способ получения фрактальных сигналов с помощью фрактальных сплайнов, аналогичных сигналам, генерируемыми фрактальными функциями. Обосновывается гипотеза об идентичности дискретных фрактальных функций и линейных фрактальных сплайнов. Рассмотрены особенности расчета матрицы планирования для кумулятивного фрактального сплайна, приведены примеры сгенерированных кривых.

    Novikova O.B.
    Fractal spline as a model of fractal functions for fractal signals generation
    Computer Research and Modeling, 2013, v. 5, no. 4, pp. 583-587

    This paper presents a method for obtaining fractal signals using fractal splines similar to signals generated by fractal functions. The hypothesis about the identity of discrete fractal functions and linear fractal splines is justified. There are considered the features of planning matrix calculation of cumulative fractal spline, examples of generated curves are shown.

    Просмотров за год: 2.
  4. Свистунов И.Н., Колокол А.С., Шимкевич А.Л.
    Топологический анализ микроструктуры жидкой воды на примере модели TIP4P-EW
    Компьютерные исследования и моделирование, 2014, т. 6, № 3, с. 415-426

    Проведено молекулярно-динамическое (МД) моделирование жесткой TIP4P-EW модели воды при нормальных условиях. В качестве структурных элементов системы рассматривались симплексы Делоне, а для выделения ее плотной части использовался топологический критерий, который позволяет идентифицировать на мгновенных снимках МД ячейки микроструктуру системы молекул воды. Геометрический анализ симплексов Делоне системы указывает на сильную их уплощенность по сравнению с правильным тетраэдром, что принципиально отличается от результатов для простых жидкостей. Статистика кластеров плотной части мгновенного снимка системы исследовалась в зависимости от их мощности и связности. Она схожа с таковой для простых жидкостей, а структура этой плотной части также представляет собой фрактальную поверхность, состоящую из свободных граней симплексов Делоне.

    Svistunov I.N., Kolokol A.S., Shimkevich A.L.
    Topological microstructure analysis of the TIP4P-EW water model
    Computer Research and Modeling, 2014, v. 6, no. 3, pp. 415-426

    Molecular dynamics (MD) simulations of rigid water model TIP4P-EW at ambient conditions were carried out. Delaunay’s simplexes were considered as structural elements of liquid water. Topological criterion which allows to identify the water microstructure in snapshot of MD cell was used to allocate its dense part. Geometrical analysis of water Delaunay’s simplexes indicates their strong flatness in comparison with a regular tetrahedron that is fundamentally different from the results for dense part of simple liquids. The statistics of TIP4P-EW water clusters was investigated depending on their cardinality and connectivity. It is similar to the statistics for simple liquids and the structure of this dense part is also a fractal surface consisting of the free edges of the Delaunay’s simplexes.

    Просмотров за год: 1. Цитирований: 1 (РИНЦ).
  5. Москалев П.В.
    Перколяционное моделирование гидравлического гистерезиса в пористой среде
    Компьютерные исследования и моделирование, 2014, т. 6, № 4, с. 543-558

    В работе рассматриваются различные модели гидравлического гистерезиса, возникающего при инвазивной ртутной порометрии. Для моделирования гидравлического гистерезиса используется изотропная перколяция узлов на трехмерных квадратных решетках с $(1,\,\pi)$-окрестностью. Феноменологически исследуется взаимосвязь данных инвазивной порометрии с параметрами перколяционной модели. Реализация перколяционной модели основана на библиотеках SPSL и SECP, выпущенных под лицензией GNU GPL-3 с использованием свободного языка программирования R.

    Moskalev P.V.
    Percolation modeling of hydraulic hysteresis in a porous media
    Computer Research and Modeling, 2014, v. 6, no. 4, pp. 543-558

    In this paper we consider various models of hydraulic hysteresis in invasive mercury porosimetry. For simulating the hydraulic hysteresis is used isotropic site percolation on three-dimensional square lattices with $(1,\,\pi)$-neighborhood. The relationship between the percolation model parameters and invasive porosimetry data is studied phenomenologically. The implementation of the percolation model is based on libraries SPSL and SECP, released under license GNU GPL-3 using the free programming language R.

    Просмотров за год: 3. Цитирований: 1 (РИНЦ).
  6. Бруяка В.А.
    Моделирование течения тонкого слоя жидкости с учетом разрывов и шероховатости границ
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 795-806

    Рассматривается задача о течении жидкости в тонком слое между шероховатыми поверхностями с учетом их сближения и разрывов слоя в местах гребневого контакта микронеровностей. Пространство между поверхностями рассматривается как пористая среда с переменной проницаемостью, зависящей от микропрофиля шероховатости и степени сближения поверхностей. Для получения зависимости проницаемости от сближения поверхностей выполняется расчет течения жидкости на малом участке слоя (100 мкм), для которого микропрофиль шероховатости моделируется с помощью фрактальной функции Вейерштрасса – Мандельброта. Расчетной является трехмерная область, заполняющая пустоты между выступами и впадинами микропрофилей поверхностей, расположенных на некотором расстоянии друг от друга. Сближение поверхностей приводит к тому, что в местах пересечения гребней микронеровностей появляются разрывы расчетной области. При заданном сближении и граничных условиях рассчитывается расход жидкости и перепад давления, на основании которых вычисляется проницаемость эквивалентной пористой среды. Результаты расчетов проницаемости, полученные для различных сближений шероховатых поверхностей, аппроксимированы степенной функцией. Это позволяет рассчитывать характеристики течения в тонком слое переменной толщины, имеющем характерную длину на несколько порядков больше масштабов шероховатости. В качестве примера, иллюстрирующего практическое применение данной методики, получено решение задачи о течении жидкости в зазоре между заготовкой и матрицей при гидропрессовании в трехмерной постановке при условии линейного уменьшения проницаемости эквивалентного пористого слоя.

    In this paper a fluid flow between two close located rough surfaces depending on their location and discontinuity in contact areas is investigated. The area between surfaces is considered as the porous layer with the variable permeability, depending on roughness and closure of surfaces. For obtaining closure-permeability function, the flow on the small region of surfaces (100 $\mu$m) is modeled, for which the surfaces roughness profile created by fractal function of Weierstrass – Mandelbrot. The 3D-domain for this calculation fill out the area between valleys and peaks of two surfaces, located at some distance from each other. If the surfaces get closer, a contacts between roughness peaks will appears and it leads to the local discontinuities in the domain. For the assumed surfaces closure and boundary conditions the mass flow and pressure drop is calculated and based on that, permeability of the equivalent porous layer is evaluated.The calculation results of permeability obtained for set of surfaces closure were approximated by a polynom. This allows us to calculate the actual flow parameters in a thin layer of variable thickness, the length of which is much larger than the scale of the surface roughness. As an example, showing the application of this technique, flow in the gap between the billet and conical die in 3D-formulation is modeled. In this problem the permeability of an equivalent porous layer calculated for the condition of a linear decreased gap.

  7. Шибков А.А., Кочегаров С.С.
    Компьютерное и физико-химическое моделирование эволюции фрактального коррозионного фронта
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 105-124

    Коррозионные повреждения металлов и сплавов — одна из основных проблем прочности и долговечности металлических конструкций и изделий, эксплуатируемых в условиях контакта с химически агрессивными средами. В последнее время возрастает интерес к компьютерному моделированию эволюции коррозионных повреждений, особенно питтинговой коррозии, для более глубокого понимания коррозионного процесса, его влияния на морфологию, физико-химические свойства поверхности и механическую прочность и долговечность материала. Это обусловлено в основном сложностью аналитических и высокой стоимостью экспериментальных in situ исследований реальных коррозионных процессов. Вместе с тем вычислительные мощности современных компьютеров позволяют с высокой точностью рассчитывать коррозию лишь на относительно небольших участках поверхности. Поэтому разработка новых математических моделей, позволяющих рассчитывать большие области для прогнозирования эволюции коррозионных повреждений металлов, является в настоящее время актуальной проблемой.

    В настоящей работе с помощью разработанной компьютерной модели на основе клеточного автомата исследовали эволюцию коррозионного фронта при взаимодействии поверхности поликристаллического металла с жидкой агрессивной средой. Зеренная структура металла задавалась с помощью многоугольников Вороного, используемых для моделирования поликристаллических сплавов. Коррозионное разрушение осуществлялось при помощи задания вероятностной функции перехода между ячейками клеточного автомата. Принималось во внимание, что коррозионная прочность зерен неодинакова вследствие кристаллографической анизотропии. Показано, что это приводит к формированию шероховатой фазовой границы в ходе коррозионного процесса. Снижение концентрации активных частиц в растворе агрессивной среды в ходе протекающей химической реакции приводит к затуханию коррозии за конечное число итераций расчета. Установлено, что конечная фазовая граница имеет фрактальную структуру с размерностью 1.323 ± 0.002, близкой к размерности фронта градиентной перколяции, что хорошо согласуется с фрактальной размерностью фронта травления поликристаллического алюминий-магниевого сплава АМг6 концентрированным раствором соляной кислоты. Показано, что коррозия поликристаллического металла в жидкой агрессивной среде представляет новый пример топохимического процесса, кинетика которого описывается теорией Колмогорова–Джонсона–Мейла–Аврами.

    Shibkov A.A., Kochegarov S.S.
    Computer and physical-chemical modeling of the evolution of a fractal corrosion front
    Computer Research and Modeling, 2021, v. 13, no. 1, pp. 105-124

    Corrosion damage to metals and alloys is one of the main problems of strength and durability of metal structures and products operated in contact with chemically aggressive environments. Recently, there has been a growing interest in computer modeling of the evolution of corrosion damage, especially pitting corrosion, for a deeper understanding of the corrosion process, its impact on the morphology, physical and chemical properties of the surface and mechanical strength of the material. This is mainly due to the complexity of analytical and high cost of experimental in situ studies of real corrosion processes. However, the computing power of modern computers allows you to calculate corrosion with high accuracy only on relatively small areas of the surface. Therefore, the development of new mathematical models that allow calculating large areas for predicting the evolution of corrosion damage to metals is currently an urgent problem.

    In this paper, the evolution of the corrosion front in the interaction of a polycrystalline metal surface with a liquid aggressive medium was studied using a computer model based on a cellular automat. A distinctive feature of the model is the specification of the solid body structure in the form of Voronoi polygons used for modeling polycrystalline alloys. Corrosion destruction was performed by setting the probability function of the transition between cells of the cellular automaton. It was taken into account that the corrosion strength of the grains varies due to crystallographic anisotropy. It is shown that this leads to the formation of a rough phase boundary during the corrosion process. Reducing the concentration of active particles in a solution of an aggressive medium during a chemical reaction leads to corrosion attenuation in a finite number of calculation iterations. It is established that the final morphology of the phase boundary has a fractal structure with a dimension of 1.323 ± 0.002 close to the dimension of the gradient percolation front, which is in good agreement with the fractal dimension of the etching front of a polycrystalline aluminum-magnesium alloy AlMg6 with a concentrated solution of hydrochloric acid. It is shown that corrosion of a polycrystalline metal in a liquid aggressive medium is a new example of a topochemical process, the kinetics of which is described by the Kolmogorov–Johnson– Meil–Avrami theory.

  8. Булатов А.А., Сысоев А.А., Иудин Д.И.
    Моделирование инициации молнии на базе динамического графа
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 125-147

    Несмотря на многочисленные достижения современной науки, до сих пор остается нераскрытой проблема зарождения молниевого разряда в безэлектродном грозовом облаке, максимальная напряженность электрического поля в котором примерно на порядок меньше диэлектрической прочности воздуха. Хотя не вызывает сомнений тот факт, что развитие разряда начинается с появления в облаке положительных стримеров, развитие которых становится возможным при примерно вдвое меньших значениях электрического поля по сравнению с отрицательными, на настоящий момент остается неизученным вопрос о том, каким образом холодные слабопроводящие стримерные системы объединяются в горячий хорошо проводящий лидерный канал, способный к самостоятельному распространению за счет эффективной поляризации в относительно слабом внешнем поле. В данной работе представлена самоорганизующаяся транспортная модель, реализованная на примере формирования фрактального древа электрического разряда в грозовом облаке и направленная на численное моделирование процесса начальной стадии развития молниевого разряда. Среди инновационных особенностей нашего подхода, отсутствующих в других численных моделях развития молнии, можно выделитьот сутствие привязки элементов проводящей структуры графа к узлам пространственной решетки, высокое пространственно-временное разрешение и учет временной эволюции электрических параметров транспортных каналов. Кроме того, модельучи тывает известную из многочисленных экспериментов асимметрию полей развития положительных и отрицательных стримеров. В рамках используемого подхода результирующий хорошо проводящий лидерный канал формируется за счет коллективного эффекта объединения токов десятков тысяч взаимодействующих между собой стримеров, каждый из которых изначально обладает пренебрежимо малой проводимостью и температурой, не отличающейся от температуры окружающей среды. Модельное биполярное древо представляет собой направленный граф (имеет положительную и отрицательную части) и имеет морфологические и электро-динамические характеристики, промежуточные между лабораторной длинной искрой и развитой молнией. Модель имеет универсальный характер, что при необходимости позволяет использовать ее в рамках других задач, связанных с исследованием транспортных (в широком смысле слова) сетей.

    Bulatov A.A., Syssoev A.A., Iudin D.I.
    Simulation of lightning initiation on the basis of dynamical grap
    Computer Research and Modeling, 2021, v. 13, no. 1, pp. 125-147

    Despite numerous achievements of modern science the problem of lightning initiation in an electrodeless thundercloud, the maximum electric field strength inside which is approximately an order of magnitude lower than the dielectric strength of air, remains unsolved. Although there is no doubt that discharge activity begins with the appearance of positive streamers, which can develop under approximately half the threshold electric field as compared to negative ones, it remains unexplored how cold weakly conducting streamer systems unite in a joint hot well-conducting leader channel capable of self-propagation due to effective polarization in a relatively small external field. In this study, we present a self-organizing transport model which is applied to the case of electric discharge tree formation in a thundercloud. So, the model is aimed at numerical simulation of the initial stage of lightning discharge development. Among the innovative features of the model are the absence of grid spacing, high spatiotemporal resolution, and consideration of temporal evolution of electrical parameters of transport channels. The model takes into account the widely known asymmetry between threshold fields needed for positive and negative streamers development. In our model, the resulting well-conducting leader channel forms due to collective effect of combining the currents of tens of thousands of interacting streamer channels each of which initially has negligible conductivity and temperature that does not differ from the ambient one. The model bipolar tree is a directed graph (it has both positive and negative parts). It has morphological and electrodynamic characteristics which are intermediate between laboratory long spark and developed lightning. The model has universal character which allows to use it in other tasks related to the study of transport (in the broad sense of the word) networks.

  9. Ухманьски Я.З.
    Об алгоритмической сущности биологии
    Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 641-652

    Степень математизации физики чрезвычайно высока, и это позволяет понимать законы природы путем анализа математических структур, которые их описывают. Но это верно лишь для физических законов. Напротив, степень математизации биологии весьма невелика, и все попытки ее математизации ограничиваются применением тех математических методов, которые употребляются для описания физических систем. Такой подход, возможно, ошибочен, поскольку биологическим системам придаются атрибуты, которых у них нет. Некоторые думают, что нам нужны новые математические методы, которые соответствуют нуждам биологии и не известны физике. Однако, рассматривая специфику биологических систем, мы должны говорить об их алгоритмичности, а не об их математичности. В качестве примеров алгоритмического подхода к биологическим системам можно указать на так называемые индивидуальные модели (individual-based models), которые в экологии употребляются для описания динамики популяций, или на фрактальные модели, описывающие геометрическую структуру растений.

    Uchmanski J.Z.
    On algorithmic essence of biology
    Computer Research and Modeling, 2020, v. 12, no. 3, pp. 641-652

    Mathematicity of physics is surprising, but it enables us to understand the laws of nature through the analysis of mathematical structures describing it. This concerns, however, only physics. The degree of the mathematization of biology is low, and attempts to mathematize it are limited to the application of mathematical methods used for the description of physical systems. When doing so, we are likely to commit an error of attributing to biological systems features that they do not have. Some argue that biology does need new mathematical methods conforming to its needs, and not known from physics. However, because of a specific complexity of biological systems, we should speak of their algorithmicity, rather than of their mathematicity. As an example of algorithmic approach one can indicate so called individual-based models used in ecology to describe population dynamics or fractal models applied to describe geometrical complexity of such biological structures as trees.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.