Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Assessing the impact of deposit benchmark interest rate on banking loan dynamics
Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 1023-1032Deposit benchmark interest rates are a policy implemented by banking regulators to calculate the interest rates offered to depositors, maintaining equitable and competitive rates within the financial industry. It functions as a benchmark for determining the pricing of different banking products, expenses, and financial choices. The benchmark rate will have a direct impact on the amount of money deposited, which in turn will determine the amount of money available for lending.We are motivated to analyze the influence of deposit benchmark interest rates on the dynamics of banking loans. This study examines the issue using a difference equation of banking loans. In this process, the decision on the loan amount in the next period is influenced by both the present loan volume and the information on its marginal profit. An analysis is made of the loan equilibrium point and its stability. We also analyze the bifurcations that arise in the model. To ensure a stable banking loan, it is necessary to set the benchmark rate higher than the flip value and lower than the transcritical bifurcation values. The confirmation of this result is supported by the bifurcation diagram and its associated Lyapunov exponent. Insufficient deposit benchmark interest rates might lead to chaotic dynamics in banking lending. Additionally, a bifurcation diagram with two parameters is also shown. We do numerical sensitivity analysis by examining contour plots of the stability requirements, which vary with the deposit benchmark interest rate and other parameters. In addition, we examine a nonstandard difference approach for the previous model, assess its stability, and make a comparison with the standard model. The outcome of our study can provide valuable insights to the banking regulator in making informed decisions regarding deposit benchmark interest rates, taking into account several other banking factors.
Assessing the impact of deposit benchmark interest rate on banking loan dynamics
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 1023-1032Deposit benchmark interest rates are a policy implemented by banking regulators to calculate the interest rates offered to depositors, maintaining equitable and competitive rates within the financial industry. It functions as a benchmark for determining the pricing of different banking products, expenses, and financial choices. The benchmark rate will have a direct impact on the amount of money deposited, which in turn will determine the amount of money available for lending.We are motivated to analyze the influence of deposit benchmark interest rates on the dynamics of banking loans. This study examines the issue using a difference equation of banking loans. In this process, the decision on the loan amount in the next period is influenced by both the present loan volume and the information on its marginal profit. An analysis is made of the loan equilibrium point and its stability. We also analyze the bifurcations that arise in the model. To ensure a stable banking loan, it is necessary to set the benchmark rate higher than the flip value and lower than the transcritical bifurcation values. The confirmation of this result is supported by the bifurcation diagram and its associated Lyapunov exponent. Insufficient deposit benchmark interest rates might lead to chaotic dynamics in banking lending. Additionally, a bifurcation diagram with two parameters is also shown. We do numerical sensitivity analysis by examining contour plots of the stability requirements, which vary with the deposit benchmark interest rate and other parameters. In addition, we examine a nonstandard difference approach for the previous model, assess its stability, and make a comparison with the standard model. The outcome of our study can provide valuable insights to the banking regulator in making informed decisions regarding deposit benchmark interest rates, taking into account several other banking factors.
-
Нелинейная динамика трансмембранного потенциала и pH в примембранной области клетки харовых водорослей
Компьютерные исследования и моделирование, 2009, т. 1, № 2, с. 233-239В данной работе развивается предложенная ранее модель [1] потенциалозависимого протонного переноса через мембрану клетки водоросли Chara. В предыдущем варианте модели [1] в качестве переменных рассматриваются концентрация протонов снаружи клетки и трансмембранный потенциал. В предлагаемом варианте модели вводится новая переменная - концентрация протонов в цитоплазме. При исследовании модели получены колебательная и хаотическая динамики трансмембранного потенциала. Обсуждается физиологическая роль наблюдаемых режимов.
Nonlinear dynamic of the transmembrane potential and pH along the cell membrane of Chara alga
Computer Research and Modeling, 2009, v. 1, no. 2, pp. 233-239Просмотров за год: 3. Цитирований: 1 (РИНЦ).The model of potential dependent proton transfer trough the cell membrane of Chara alga developed in [1] is considered. In the last version of the model we considered two variables: proton concentration near the surface cell and transmembrane potential. In present version we introduce the new variable — proton concentration in cytoplasm. Oscillative and chaotic dynamic of transmembrane potential was obtained in calculations. The physiological role of these patterns is discussed.
-
Использование методов теории управления для формирования рыночных структур
Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 839-859В статье рассматриваются методы формирования рыночных структур при ориентации участников возникающих рынков на максимально возможные темпы роста, а также при ориентации их на максимизацию показателей экономической эффективности. Для первого случая разработан метод достижения желаемой структуры рынка, основанный на использовании принципов теории систем с переменной структурой. Для случая ориентации фирм на достижение максимума NPV рассматривается игровой подход к поддержанию конкурентной среды, основанный на эффективном методе расчета оптимальных по Нэшу–Курно и по Штакельбергу стратегий с помощью аппарата Z-преобразования.
Ключевые слова: рыночные структуры, олигополистические рынки, системы с переменной структурой, динамические игры, оптимальные стратегии.
Control theory methods for creating market structures
Computer Research and Modeling, 2014, v. 6, no. 5, pp. 839-859Просмотров за год: 4. Цитирований: 4 (РИНЦ).Control theory methods for creating market structures are discussed for two cases: when market participants are pursuing aims 1) of maximal growth and 2) of maximum economic efficiency of their firms. For the first case method based on variable structure systems principles is developed. For the second case dynamic game approach is proposed based on computation of Nash–Cournot and Stackelberg strategies with the help of Z-transform.
-
Численное моделирование внешнего обтекания спортсмена
Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 331-344В работе описывается численное моделирование процесса внешнего обтекания подвижного спортсмена с целью определения его интегральных характеристик при различных режимах набегающего потока и режимах его движения. Численное моделирование выполнено с помощью программного комплекса вычислительной гидродинамики FlowVision, построенного на решении набора уравнений, описывающих движение жидкости и/или газа в расчетной области, в том числе уравнений сохранения массы, импульса и энергии, уравнений состояния, уравнений моделей турбулентности. Также учитываются подвижные границы расчетной области, изменяющаяся геометрическая форма которых моделирует фазы движения спортсмена, при прохождении трассы. Решение системы уравнений выполняется на декартовой сетке с локальной адаптацией в области высоких градиентов давлений или сложной геометрической формы границы расчетной области. Решение уравнений выполняется с помощью метода конечных объемов, с использованием расщепления по физическим процессам. Разработанная методика была апробирована на примере спортсменов, совершающих прыжки на лыжах с трамплина, в рамках подготовки к Олимпиаде в Сочи в 2014 году. Сравнение результатов численного и натурного эксперимента показало хорошую корреляцию. Технология моделирования состоит из следующих этапов:
1) разработка постановки задачи внешнего обтекания спортсмена в обращенной постановке, где неподвижный объект исследования обтекается набегающим потоком, со скоростью, равной скорости движения объекта;
2) разработка технологии изменения геометрической формы границы расчетной области в зависимости от фазы движения спортсмена; разработка методики численного моделирования, включающей в себя определение дискретизации по времени и пространству за счет выбора шага интегрирования и измельчения объемной расчетной сетки;
3) проведение серии расчетов с использованием геометрических и динамических данных спортсмена из сборной команды.
Описанная методика универсальна и применима для любых других видов спорта, биомеханических, природных и подобных им технических объектов.
Numerical simulation of sportsman's external flow
Computer Research and Modeling, 2017, v. 9, no. 2, pp. 331-344Просмотров за год: 29.Numerical simulation of moving sportsman external flow is presented. The unique method is developed for obtaining integral aerodynamic characteristics, which were the function of the flow regime (i.e. angle of attack, flow speed) and body position. Individual anthropometric characteristics and moving boundaries of sportsman (or sports equipment) during the race are taken into consideration.
Numerical simulation is realized using FlowVision CFD. The software is based on the finite volume method, high-performance numerical methods and reliable mathematical models of physical processes. A Cartesian computational grid is used by FlowVision, the grid generation is a completely automated process. Local grid adaptation is used for solving high-pressure gradient and object complex shape. Flow simulation process performed by solutions systems of equations describing movement of fluid and/or gas in the computational domain, including: mass, moment and energy conservation equations; state equations; turbulence model equations. FlowVision permits flow simulation near moving bodies by means of computational domain transformation according to the athlete shape changes in the motion. Ski jumper aerodynamic characteristics are studied during all phases: take-off performance in motion, in-run and flight. Projected investigation defined simulation method, which includes: inverted statement of sportsman external flow development (velocity of the motion is equal to air flow velocity, object is immobile); changes boundary of the body technology defining; multiple calculations with the national team member data projecting. The research results are identification of the main factors affected to jumping performance: aerodynamic forces, rotating moments etc. Developed method was tested with active sportsmen. Ski jumpers used this method during preparations for Sochi Olympic Games 2014. A comparison of the predicted characteristics and experimental data shows a good agreement. Method versatility is underlined by performing swimmer and skater flow simulation. Designed technology is applicable for sorts of natural and technical objects.
-
Математическая модель дифференциации общества с социальной напряженностью
Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 999-1012В статье моделируется развитие во времени многопартийной политической системы с учетом социальной напряженности. Предлагается система нелинейных дифференциальных уравнений относительно долей приверженцев партий и дополнительной скалярной переменной, характеризующей величину напряженности в обществе. Изменение доли каждой партии пропорционально текущему значению, умноженному на коэффициент, который состоит из притока беспартийных, перетоков членов из конкурирующих партий и убыли вследствие роста социальной напряженности. Напряженность прирастает пропорционально долям партий и снижается при их отсутствии. Число партий фиксировано, в модели отсутствуют механизмы объединения существующих или рождения новых партий.
Для исследования модели использован подход, основанный на выделении условий, при которых данная задача относится к классу косимметричных систем. Это позволяет проанализировать мультистабильность возможных динамических процессов и их разрушение при нарушении косимметрии. Существование косимметрии для системы дифференциальных уравнений обеспечивается наличием дополнительных связей на параметры, и при этом возможно возникновение непрерывных семейств стационарных и нестационарных решений. Для анализа сценариев нарушения косимметрии применяется подход на основе селективной функции. В случае с одной политической партией мультистабильности нет, каждому набору параметров соответствует только одно устойчивое решение. Для системы из двух партий показано, что возможны два семейства равновесий, а также семейство предельных циклов. Представлены результаты численных экспериментов, демонстрирующие разрушение семейств и реализацию различных сценариев, приводящих к стабилизации политической системы с сосуществованием обеих партий или к исчезновению одной из партий, когда часть населения перестает поддерживать одну из партий и становится безразличной.
Рассматриваемая модель может быть использована для прогнозирования межпартийной борьбы во время предвыборной кампании. В этом случае необходимо учитывать зависимость коэффициентов системы от времени.
Ключевые слова: моделирование социума, напряженность, дифференциальные уравнения, косимметрия, семейства равновесий, предельные циклы, мультистабильност.
Mathematical model of political differentiation under social tension
Computer Research and Modeling, 2019, v. 11, no. 5, pp. 999-1012We comsider a model of the dynamics a political system of several parties, accompanied and controlled by the growth of social tension. A system of nonlinear ordinary differential equations is proposed with respect to fractions and an additional scalar variable characterizing the magnitude of tension in society the change of each party is proportional to the current value multiplied by a coefficient that consists of an influx of novice, a flow from competing parties, and a loss due to the growth of social tension. The change in tension is made up of party contributions and own relaxation. The number of parties is fixed, there are no mechanisms in the model for combining existing or the birth of new parties.
To study of possible scenarios of the dynamic processes of the model we derive an approach based on the selection of conditions under which this problem belongs to the class of cosymmetric systems. For the case of two parties, it is shown that in the system under consideration may have two families of equilibria, as well as a family of limit cycles. The existence of cosymmetry for a system of differential equations is ensured by the presence of additional constraints on the parameters, and in this case, the emergence of continuous families of stationary and nonstationary solutions is possible. To analyze the scenarios of cosymmetry breaking, an approach based on the selective function is applied. In the case of one political party, there is no multistability, one stable solution corresponds to each set of parameters. For the case of two parties, it is shown that in the system under consideration may have two families of equilibria, as well as a family of limit cycles. The results of numerical experiments demonstrating the destruction of the families and the implementation of various scenarios leading to the stabilization of the political system with the coexistence of both parties or to the disappearance of one of the parties, when part of the population ceases to support one of the parties and becomes indifferent are presented.
This model can be used to predict the inter-party struggle during the election campaign. In this case necessary to take into account the dependence of the coefficients of the system on time.
-
Задачи численного моделирования динамики системы «почва–растение»
Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 445-465Рассмотрены современные математические модели динамики системы «почва–растение», составляющими которых выступают: растение сельскохозяйственного назначения, микроорганизмы ризосферы (прикорневой зоны растений), элементы минерального питания растений их подвижной и неподвижной форм. На основании анализа принятых положений разработана модель, в которой учитываются взаимосвязи и определенный согласованный характер совместных изменений ее составляющих. В частности, динамика содержащихся в растениях элементов их минерального питания и динамика биомассы растений определяются текущим содержанием в ризосфере внесенных сюда удобрений и отмершими продуктами жизнедеятельности ризосферных элементов (отмершие корни растений, опавшие листья (опад) и т. д.). Полагаются пространственная неподвижность растений и пространственная подвижность микро- организмов, механизм которой определяется здесь диффузией. Предлагаются формальные соотношения влияния суммарного воздействия на динамику растений сорняков (они характеризуют отдельный вид растений) и вредителей (они характеризуют отдельный вид микроорганизмов), где учитываются взаимные переходы элементов минерального питания из подвижной их формы в неподвижную. Для системы, где каждая из составляющих представлена только одним видом (удобрение, ассоциация микроорганизмов и растения представлены только одним видом), выполнено аналитическое исследование. Для однолетних культур сельскохозяйственного назначения разработана адаптация модели распространения волны в системе «ресурс–потребитель» (волны Колмогорова–Петровского–Пискунова). Реализация модели выполнена на примере динамики роста яровой пшеницы Красноуфимская-100 на торфяной низинной почве, куда предварительно были внесены фосфорные и калийные удобрения. Цифровой материал представлен массивом экспериментальных распределений биомассы растений и элементов минерального питания. Специфика экспериментального материала обусловила переход к модели, которая является редукцией сформулированной общей модели. Ее составляющими выступают распределение биомассы растений и содержание в них элементов минерального питания. Оценка адекватности модельных и экспериментальных распределений показала хорошую степень их соответствия.
Ключевые слова: модели динамики биомассы, динамика биофильных элементов ризосферы, параметрическая идентификация математической модели.
Problems of numerical simulation in the dynamics system “soil–plant”
Computer Research and Modeling, 2020, v. 12, no. 2, pp. 445-465Modern mathematical models in the dynamics system “soil–plant” are considered. The components of this system are: agricultural plant, microorganisms of the rhizosphere (root zone of plants), the mineral nutrition elements of plants in their mobile and immobile forms. The model of submitted system based on the analysis of the adopted provisions was developed. The construction of system elements allows to display the coordinated dynamics of these elements among themselves. In particular, the dynamics of mineral nutrition elements in plants and the dynamics of their biomass are determined by the current contents in the rhizosphere of mineral fertilizers and organic origin substances (plant roots, leaves, etc.). The immobility of plants spatial distribution and the mobile spatial nature of microorganisms are assumed. This mechanism is determined by diffusion. Mutual relationships between weeds and pests are suggested. The dynamics of the mineral nutrition elements is determined by the peculiarity of sorption in the soil solution, environmental conditions, organic decomposition and fertilizer application. An analytical study for a system where each of the components is represented by only one species (fertilizer, the association of microorganisms and plants) was performed. An adaptation of the wave propagation model in the “resource–consumer” system (Kolmogorov–Petrovsky–Piskunov waves) has been developed for annual agricultural crops. The developed model has been adapted for the growth of Krasnoufimskaya-100 spring wheat in a vessel on peat lowland soil, where nitrogen, phosphorus, and potassium fertilizers were added variably. Sample distributions are plants biomass and the content of mineral nutrition elements in them. The parametric identification of the model and its adequacy was performed. An assessment of the model adequacy showed a good agreement between the model and experimental data.
-
Моделирование баллистики артиллерийского выстрела с учетом пространственного распределения параметров и противодавления
Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1123-1147В работе приводится сравнительный анализ результатов, полученных при различных подходах к моделированию процесса артиллерийского выстрела. В этой связи дана постановка основной задачи внутренней баллистики и ее частного случая задачи Лагранжа в осредненных параметрах, где в рамках допущений термодинамического подхода впервые учтены распределения давления и скорости газа по заснарядному пространству для канала переменного сечения. Представлена также постановка задачи Лагранжа в рамках газодинамического подхода, учитывающего пространственное (одномерное и двумерное осесимметричное) изменение характеристик внутрибаллистического процесса. Для численного решения системы газодинамических уравнений Эйлера применяется метод контрольного объема. Параметры газа на границах контрольных объемов опреде- ляются с использованием автомодельного решения задачи о распаде произвольного разрыва. На базе метода Годунова предложена модификация схемы Ошера, позволяющая реализовать алгоритм численного расчета со вторым порядком точности по координате и времени. Проведено сравнение решений, полученных в рамках термодинамического и газодинамического подходов, при различных параметрах заряжания. Изучено влияние массы снаряда и уширения камеры на распределение внутрибаллистических параметров выстрела и динамику движения снаряда. Показано, что термодинамический подход, по сравнению с газодинамическим подходом, приводит к систематическому завышению расчетной дульной скорости снаряда во всем исследованном диапазоне изменения параметров, при этом различие по дульной скорости может достигать 35 %. В то же время расхождение результатов, полученных в рамках одномерной и двумерной газодинамических моделей выстрела в этом же диапазоне изменения параметров, составляет не более 1.3 %.
Дана пространственная газодинамическая постановка задачи о противодавлении, описывающая изменение давления перед ускоряющимся снарядом при его движении по каналу ствола. Показано, что учет формы передней части снаряда в рамках двумерной осесимметричной постановки задачи приводит к существенному различию полей давления за фронтом ударной волны по сравнению с решением в рамках одномерной постановки задачи, где форму передней части снаряда учесть невозможно. Сделан вывод, что это может существенно повлиять на результаты моделирования баллистики выстрела при высоких скоростях метания.
Ключевые слова: артиллерийская система, основная задача внутренней баллистики, задача Лагранжа, противодавление, математическое моделирование, термодинамический подход, газодинамический подход, вычислительный эксперимент, сравнение результатов.
Modeling of ballistics of an artillery shot taking into account the spatial distribution of parameters and backpressure
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1123-1147The paper provides a comparative analysis of the results obtained by various approaches to modeling the process of artillery shot. In this connection, the main problem of internal ballistics and its particular case of the Lagrange problem are formulated in averaged parameters, where, within the framework of the assumptions of the thermodynamic approach, the distribution of pressure and gas velocity over the projectile space for a channel of variable cross section is taken into account for the first time. The statement of the Lagrange problem is also presented in the framework of the gas-dynamic approach, taking into account the spatial (one-dimensional and two-dimensional axisymmetric) changes in the characteristics of the ballistic process. The control volume method is used to numerically solve the system of Euler gas-dynamic equations. Gas parameters at the boundaries of control volumes are determined using a selfsimilar solution to the Riemann problem. Based on the Godunov method, a modification of the Osher scheme is proposed, which allows to implement a numerical calculation algorithm with a second order of accuracy in coordinate and time. The solutions obtained in the framework of the thermodynamic and gas-dynamic approaches are compared for various loading parameters. The effect of projectile mass and chamber broadening on the distribution of the ballistic parameters of the shot and the dynamics of the projectile motion was studied. It is shown that the thermodynamic approach, in comparison with the gas-dynamic approach, leads to a systematic overestimation of the estimated muzzle velocity of the projectile in the entire range of parameters studied, while the difference in muzzle velocity can reach 35%. At the same time, the discrepancy between the results obtained in the framework of one-dimensional and two-dimensional gas-dynamic models of the shot in the same range of change in parameters is not more than 1.3%.
A spatial gas-dynamic formulation of the backpressure problem is given, which describes the change in pressure in front of an accelerating projectile as it moves along the barrel channel. It is shown that accounting the projectile’s front, considered in the two-dimensional axisymmetric formulation of the problem, leads to a significant difference in the pressure fields behind the front of the shock wave, compared with the solution in the framework of the onedimensional formulation of the problem, where the projectile’s front is not possible to account. It is concluded that this can significantly affect the results of modeling ballistics of a shot at high shooting velocities.
-
Математические методы стабилизации структуры социальных систем при действии внешних возмущений
Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 845-857В статье рассматривается билинейная модель влияния внешних возмущений на стабильность струк- туры социальных систем. Исследуются подходы к стабилизации третьей стороной исходной системы, состоящей из двух групп, — путем сведения исходной системы к линейной системе с неопределенными параметрами и использования результатов теории линейных динамических игр с квадратичным критери- ем. На основе компьютерных экспериментов анализируется влияние коэффициентов условной модели социальной системы и параметров управления на качество стабилизации системы. Показано, что исполь- зование третьей стороной минимаксной стратегии в форме управления с обратной связью приводит к от- носительно близкому приближению численности второй группы (возбуждаемой внешними воздействия- ми) к приемлемому уровню даже при неблагоприятном периодическом динамическом воздействии.
Исследуется влияние на качество стабилизации системы одного из ключевых коэффициентов в кри- терии $(\varepsilon)$, используемого для компенсации воздействия внешних возмущений (последние присутствуют в линейной модели в форме неопределенности). С использованием операционного исчисления показыва- ется, что уменьшение коэффициента ε должно приводить к увеличению значений суммы квадратов уп- равления. Проведенные в статье компьютерные расчеты показывают также, что улучшение приближения структуры системы к равновесному уровню при уменьшении коэффициента $\varepsilon$ достигается за счет весьма резких изменений управления $V_t$ в начальный период, что может индуцировать переход части членов спокойной группы во вторую, возбужденную группу.
В статье исследуется также влияние на качество управления значений коэффициентов модели, ха- рактеризующих уровень социальной напряженности. Расчеты показывают, что повышение уровня соци- альной напряженности (при прочих равных условиях) приводит к необходимости значительного увели- чения третьей стороной усилий на стабилизацию, а также величины управления в начальный момент времени.
Результаты проведенного в статье статистического моделирования показывают, что рассчитанные управления с обратной связью успешно компенсируют случайные возмущения, действующие на соци- альную систему (как в форме независимых воздействий типа белый шум, так и в форме автокоррелиро- ванных воздействий).
Ключевые слова: модели, социальные группы, стабильность, линейные динамические системы, неопределенные параметры.
Mathematical methods for stabilizing the structure of social systems under external disturbances
Computer Research and Modeling, 2021, v. 13, no. 4, pp. 845-857The article considers a bilinear model of the influence of external disturbances on the stability of the structure of social systems. Approaches to the third-party stabilization of the initial system consisting of two groups are investigated — by reducing the initial system to a linear system with uncertain parameters and using the results of the theory of linear dynamic games with a quadratic criterion. The influence of the coefficients of the proposed model of the social system and the control parameters on the quality of the system stabilization is analyzed with the help of computer experiments. It is shown that the use of a minimax strategy by a third party in the form of feedback control leads to a relatively close convergence of the population of the second group (excited by external influences) to an acceptable level, even with unfavorable periodic dynamic perturbations.
The influence of one of the key coefficients in the criterion $(\varepsilon)$ used to compensate for the effects of external disturbances (the latter are present in the linear model in the form of uncertainty) on the quality of system stabilization is investigated. Using Z-transform, it is shown that a decrease in the coefficient $\varepsilon$ should lead to an increase in the values of the sum of the squares of the control. The computer calculations carried out in the article also show that the improvement of the convergence of the system structure to the equilibrium level with a decrease in this coefficient is achieved due to sharp changes in control in the initial period, which may induce the transition of some members of the quiet group to the second, excited group.
The article also examines the influence of the values of the model coefficients that characterize the level of social tension on the quality of management. Calculations show that an increase in the level of social tension (all other things being equal) leads to the need for a significant increase in the third party's stabilizing efforts, as well as the value of control at the transition period.
The results of the statistical modeling carried out in the article show that the calculated feedback controls successfully compensate for random disturbances on the social system (both in the form of «white» noise, and of autocorrelated disturbances).
-
Неявный алгоритм решения уравнений движения несжимаемой жидкости
Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 1009-1023Для решения уравнений Навье – Стокса в случае несжимаемых течений разработано большое количество методов, наиболее популярными из которых являются методы с коррекцией скорости по алгоритму SIMPLE, аналогом которого является метод расщепления по физическим переменным. Данные методы, разработанные еще в прошлом веке, использовались для решения достаточно простых задач — расчета как стационарных течений, так и нестационарных, в которых границы расчетной области были неподвижны. В настоящее время задачи вычислительной гидродинамики существенно усложнились. Интерес представляют задачи с движением тел в расчетной области, движением контактных границ, кавитацией и задачи с динамической локальной адаптацией расчетной сетки. При этом расчетная сетка меняется, что приводит к нарушению условия дивергентности скорости на ней. Поскольку дивергентные скорости используются не только для уравнений Навье – Стокса, но и для всех остальных уравнений математической модели движения жидкости — моделей турбулентности, массопереноса и сохранения энергии, нарушение этого условия ведет к численным ошибкам и, зачастую, к расхождению вычислительного алгоритма.
В статье представлен неявный метод расщепления по физическим переменным, который использует дивергентные скорости с данного шага по времени для решения несжимаемых уравнений Навье – Стокса. Метод разработан для расчета течений при наличии подвижных и контактных границ, моделируемых в постановке Эйлера. Метод позволяет проводить расчеты с шагом интегрирования, на порядки превышающем явный шаг по времени (число Куранта – Фридрихcа – Леви $CFL\gg1$). В данной статье представлен вариант метода для несжимаемых течений. Вариант метода, позволяющий рассчитывать движение жидкости и газа при любых числах Маха, будет опубликован в ближайшее время. Метод для полностью сжимаемых течений реализован в программном комплексе FlowVision.
В статье приводятся результаты численного решения классической задачи обтекания кругового цилиндра при малых числах Рейнольдса ($50<Re<140$), при которых ламинарное обтекание цилиндра становиться нестационарным и образуется дорожка Кармана. Показано хорошее совпадение расчетов с экспериментальными данными, опубликованными в классических работах Ван-Дайка и Танеды.
Ключевые слова: гидродинамика, газовая динамика, уравнения Навье – Стокса, метод расщепления по физическим переменным.
Implicit algorithm for solving equations of motion of incompressible fluid
Computer Research and Modeling, 2023, v. 15, no. 4, pp. 1009-1023A large number of methods have been developed to solve the Navier – Stokes equations in the case of incompressible flows, the most popular of which are methods with velocity correction by the SIMPLE algorithm and its analogue — the method of splitting by physical variables. These methods, developed more than 40 years ago, were used to solve rather simple problems — simulating both stationary flows and non-stationary flows, in which the boundaries of the calculation domain were stationary. At present, the problems of computational fluid dynamics have become significantly more complicated. CFD problems are involving the motion of bodies in the computational domain, the motion of contact boundaries, cavitation and tasks with dynamic local adaptation of the computational mesh. In this case the computational mesh changes resulting in violation of the velocity divergence condition on it. Since divergent velocities are used not only for Navier – Stokes equations, but also for all other equations of the mathematical model of fluid motion — turbulence, mass transfer and energy conservation models, violation of this condition leads to numerical errors and, often, to undivergence of the computational algorithm.
This article presents an implicit method of splitting by physical variables that uses divergent velocities from a given time step to solve the incompressible Navier – Stokes equations. The method is developed to simulate flows in the case of movable and contact boundaries treated in the Euler paradigm. The method allows to perform computations with the integration step exceeding the explicit time step by orders of magnitude (Courant – Friedrichs – Levy number $CFL\gg1$). This article presents a variant of the method for incompressible flows. A variant of the method that allows to calculate the motion of liquid and gas at any Mach numbers will be published shortly. The method for fully compressible flows is implemented in the software package FlowVision.
Numerical simulating classical fluid flow around circular cylinder at low Reynolds numbers ($50 < Re < 140$), when laminar flow is unsteady and the Karman vortex street is formed, are presented in the article. Good agreement of calculations with the experimental data published in the classical works of Van Dyke and Taneda is demonstrated.
-
Влияние направленных перемещений хищника на формирование пространственных структур в модели трехвидового сообщества с учетом всеядности хищника
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1617-1634Рассматривается модель, описывающая пространственно-временную динамику сообщества, состоящего из трех популяций, представляющих звенья трофической цепи. Локальные взаимодействия популяций строятся по типу «хищник – жертва», причем хищник потребляет не только жертву, но и ресурс, составляющий рацион жертвы. В предыдущей работе автором был проведен анализ модели без учета пространственной неоднородности. Данное исследование продолжает модельное изучение сообщества, учитывая диффузию особей, а также направленные перемещения хищника. Предполагается, что хищник реагирует на пространственное изменение ресурса и жертвы, занимая области с более высокой плотностью или избегая их. В модели такое поведение описывается адвективным членом со скоростью, пропорциональной градиенту плотности ресурса и жертвы. Система рассматривается в одномерной области в предположении нулевых потоков через границу. Динамика модели определяется устойчивостью системы в окрестности пространственно-однородного равновесия к малым пространственно-неоднородным возмущениям. В работе проведен анализ возможности возникновения в системе волновой неустойчивости, приводящей к возникновению автоволн и неустойчивости Тьюринга, в результате которой образуются стационарные структуры. Получены достаточные условия существования обоих видов неустойчивости, определяющие границы области значений коэффициентов таксиса, при которых система может потерять устойчивость. Анализ влияния параметров локальной кинетики модели на возможность образования пространственных структур показал, что при положительном таксисе на ресурс возможна лишь неустойчивость Тьюринга, а при отрицательном — оба вида неустойчивости. Для поиска численного решения системы использован метод линий с расщеплением разностного оператора по физическим процессам. Пространственно-временная динамика системы представлена в нескольких вариантах, реализующих один из типов неустойчивости. В случае положительного таксиса на жертву в областях меньшего размера возможно как реализация автоволнового режима, так и образование стационарных структур; с увеличением области тьюринговы структуры не образуются. Если же таксис на жертву отрицательный, то стационарные структуры возникают в областях любого размера, периодические структуры появляются только в более крупных областях.
Ключевые слова: модель трехвидового сообщества, неустойчивость, вызванная трофотаксисом, пространственные структуры.
Pattern formation of a three-species predator – prey model with prey-taxis and omnivorous predator
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1617-1634The spatiotemporal dynamics of a three-component model for food web is considered. The model describes the interactions among resource, prey and predator that consumes both species. In a previous work, the author analyzed the model without taking into account spatial heterogeneity. This study continues the model study of the community considering the diffusion of individuals, as well as directed movements of the predator. It is assumed that the predator responds to the spatial change in the resource and prey density by occupying areas where species density is higher or avoiding them. Directed predator movement is described by the advection term, where velocity is proportional to the gradient of resource and prey density. The system is considered on a one-dimensional domain with zero-flux conditions as boundary ones. The spatiotemporal dynamics produced by model is determined by the system stability in the vicinity of stationary homogeneous state with respect to small inhomogeneous perturbations. The paper analyzes the possibility of wave instability leading to the emergence of autowaves and Turing instability, as a result of which stationary patterns are formed. Sufficient conditions for the existence of both types of instability are obtained. The influence of local kinetic parameters on the spatial structure formation was analyzed. It was shown that only Turing instability is possible when taxis on the resource is positive, but with a negative taxis, both types of instability are possible. The numerical solution of the system was found by using method of lines (MOL) with the numerical integration of ODE system by means of splitting techniques. The spatiotemporal dynamics of the system is presented in several variants, realizing one of the instability types. In the case of a positive taxis on the prey, both autowave and stationary structures are formed in smaller regions, with an increase in the region size, Turing structures are not formed. For negative taxis on the prey, stationary patterns is observed in both regions, while periodic structures appear only in larger areas.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"