Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Влияние сократимости сердца и его сосудистой нагрузки на частоту сердечных сокращений у спортсменов
Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 323-329Частота сердечных сокращений (ЧСС) является наиболее доступным для измерения показателем. С целью контроля индивидуальной реакции на нагрузочность физических упражнений ЧСС измеряется при выполнении спортсменами мышечной работы разных типов (работа на силовых тренажерах, различные виды тренировочных и соревновательных нагрузок). По величине ЧСС и динамике ее изменения при мышечной работе и восстановлении можно объективно судить о функциональном состоянии сердечно-сосудистой системы спортсмена, об уровне его индивидуальной физической работоспособности, а также об адаптивной реакции на ту или иную физическую нагрузку. Однако ЧСС не является самостоятельным детерминантом физического состояния спортсмена. Величина ЧСС формируется в результате взаимодействия основных физиологических механизмов, определяющих гемодинамический режим сердечного выброса. Сердечный ритм зависит, с одной стороны, от сократимости сердца, от венозного возврата, от объемов предсердий и желудочков сердца, а с другой стороны — от сосудистой нагрузки сердца, основными компонентами которой являются эластическое и периферическое сопротивление артериальной системы. Величины сосудистых сопротивлений артериальной системы зависят от мощности мышечной работы и времени ее выполнения. Чувствительность ЧСС к изменениям сосудистой нагрузки сердца и его сократимости определялась у спортсменов по результатам парного регрессионного анализа одновременно зарегистрированных данных ЧСС, периферического $(R)$ и эластического $(E_a)$ сопротивлений (сосудистая нагрузка сердца), а также механической мощности $(W)$ сердечных сокращений (сократимость сердца). Коэффициенты чувствительности и коэффициенты парной корреляции между ЧСС и показателями сосудистой нагрузки и сократимости левого желудочка сердца спортсмена определялись в покое и при выполнении мышечной работы на велоэргометре. Показано, что с ростом мощности велоэргометрической нагрузки и увеличением ЧСС возрастают также коэффициенты корреляции и чувствительности между ЧСС и показателями сосудистой нагрузки сердца $(R, E_a)$ и его сократимости $(W)$.
Ключевые слова: частота сердечных сокращений, артериальное давление, фазовые интервалы сердечного цикла, сосудистые сопротивления, коэффициент чувствительности, коэффициент корреляции, сократимость, мощность сердечных сокращений.
Effects of the heart contractility and its vascular load on the heart rate in athlets
Computer Research and Modeling, 2017, v. 9, no. 2, pp. 323-329Просмотров за год: 5. Цитирований: 1 (РИНЦ).Heart rate (HR) is the most affordable indicator for measuring. In order to control the individual response to physical exercises of different load types heart rate is measured when the athletes perform different types of muscular work (strength machines, various types of training and competitive exercises). The magnitude of heart rate and its dynamics during muscular work and recovery can be objectively judged on the functional status of the cardiovascular system of an athlete, the level of its individual physical performance, as well as an adaptive response to a particular exercise. However, the heart rate is not an independent determinant of the physical condition of an athlete. HR size is formed by the interaction of the basic physiological mechanisms underlying cardiac hemodynamic ejection mode. Heart rate depends on one hand, on contractility of the heart, the venous return, the volumes of the atria and ventricles of the heart and from vascular heart load, the main components of which are elastic and peripheral resistance of the arterial system on the other hand. The values of arterial system vascular resistances depend on the power of muscular work and its duration. HR sensitivity to changes in heart load and vascular contraction was determined in athletes by pair regression analysis simultaneously recorded heart rate data, and peripheral $(R)$ and elastic $(E_a)$ resistance (heart vascular load), and the power $(W)$ of heartbeats (cardiac contractility). The coefficients of sensitivity and pair correlation between heart rate indicators and vascular load and contractility of left ventricle of the heart were determined in athletes at rest and during the muscular work on the cycle ergometer. It is shown that increase in both ergometer power load and heart rate is accompanied by the increase of correlation coefficients and coefficients of the heart rate sensitivity to $R$, $E_a$ and $W$.
-
Граничные условия для решеточных уравнений Больцмана в приложениях к задачам гемодинамики
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 865-882Рассматривается одномерная трехскоростная кинетическая решеточная модель уравнения Больцмана, которая в рамках кинетической теории описывает распространение и взаимодействие частиц трех типов. Данная модель представляет собой разностную схему второго порядка для уравнений гидродинамики. Ранее было показано, что одномерная кинетическая решеточная модель уравнения Больцмана с внешней силой в пределе малых длин свободного пробега также эквивалентна одномерным уравнениям гемодинамики для эластичных сосудов, эквивалентность можно установить, используя разложение Чепмена – Энскога. Внешняя сила в модели отвечает за возможность регулировки функциональной зависимости между площадью просвета сосуда и приложенного к стенке рассматриваемого сосуда давления. Таким образом, меняя форму внешней силы, можно моделировать практически произвольные эластичные свойства стенок сосудов. В настоящей работе рассмотрены постановки физиологически интересных граничных условий для решеточных уравнений Больцмана в приложениях к задачам течения крови в сети эластичных сосудов. Разобраны следующие граничные условия: для давления и потока крови на входе сосудистой сети, условия для давления и потоков крови в точке бифуркации сосудов, условия отражения (соответствуют полной окклюзии сосуда) и поглощения волн на концах сосудов (эти условия соответствуют прохождению волны без искажений), а также условия типа RCR, представляющие собой схему, аналогичную электрическим цепям и состоящую из двух резисторов (соответствующих импедансу сосуда, на конце которого ставятся граничные условия, а также силам трения крови в микроциркуляторном русле) и одного конденсатора (описывающего эластичные свойства артериол). Проведено численное моделирование, рассмотрена задача о распространении крови в сети из трех сосудов, на входе сети ставятся условияна входящий поток крови, на концах сети ставятсяу словия типа RCR. Решения сравниваются с эталонными, в качестве которых выступают результаты численного счета на основе разностной схемы Маккормака второго порядка (без вязких членов), показано, что оба подхода дают практически идентичные результаты.
Boundary conditions for lattice Boltzmann equations in applications to hemodynamics
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 865-882We consider a one-dimensional three velocity kinetic lattice Boltzmann model, which represents a secondorder difference scheme for hydrodynamic equations. In the framework of kinetic theory this system describes the propagation and interaction of three types of particles. It has been shown previously that the lattice Boltzmann model with external virtual force is equivalent at the hydrodynamic limit to the one-dimensional hemodynamic equations for elastic vessels, this equivalence can be achieved with use of the Chapman – Enskog expansion. The external force in the model is responsible for the ability to adjust the functional dependence between the lumen area of the vessel and the pressure applied to the wall of the vessel under consideration. Thus, the form of the external force allows to model various elastic properties of the vessels. In the present paper the physiological boundary conditions are considered at the inlets and outlets of the arterial network in terms of the lattice Boltzmann variables. We consider the following boundary conditions: for pressure and blood flow at the inlet of the vascular network, boundary conditions for pressure and blood flow for the vessel bifurcations, wave reflection conditions (correspond to complete occlusion of the vessel) and wave absorption at the ends of the vessels (these conditions correspond to the passage of the wave without distortion), as well as RCR-type conditions, which are similar to electrical circuits and consist of two resistors (corresponding to the impedance of the vessel, at the end of which the boundary conditions are set and the friction forces in microcirculatory bed) and one capacitor (describing the elastic properties of arterioles). The numerical simulations were performed: the propagation of blood in a network of three vessels was considered, the boundary conditions for the blood flow were set at the entrance of the network, RCR boundary conditions were stated at the ends of the network. The solutions to lattice Boltzmann model are compared with the benchmark solutions (based on numerical calculations for second-order McCormack difference scheme without viscous terms), it is shown that the both approaches give very similar results.
-
Разностные схемы расщепления для системы одномерных уравнений гемодинамики
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 459-488Работа посвящена построению и анализу разностных схем для системы уравнений гемодинамики, полученной осреднением уравнений гидродинамики вязкой несжимаемой жидкости по поперечному сечению сосуда. Рассматриваются модели крови как идеальной и как вязкой ньютоновской жидкости. Предложены разностные схемы, аппроксимирующие уравнения со вторым порядком по пространственной переменной. Алгоритмы расчета по построенным схемам основаны на методе расщепления по физическим процессам, в рамках которого на одном шаге по времени уравнения модели рассматриваются раздельно и последовательно. Практическая реали- зация предложенных схем приводит к последовательному решению на каждом шаге по времени двух линейных систем с трехдиагональными матрицами. Показано, что схемы являются $\rho$-устойчивыми при незначительных ограничениях на шаг по времени в случае достаточно гладких решений.
При решении задачи с известным аналитическим решением показано, что имеет место сходимость численного решения со вторым порядком по пространственной переменной в широком диапазоне значений шага сетки. При проведении вычислительных экспериментов по моделированию течения крови в модельных сосудистых системах производилось сравнение предложенных схем с такими известными явными схемами, как схема Лакса – Вендроффа, Лакса – Фридрихса и МакКормака. При решении задач показано, что результаты, полученные с помощью предложенных схем, близки к результатам расчетов, полученных по другим вычислительными схемам, в том числе построенным на основе других методов дискретизации. Показано, что в случае разных пространственных сеток время расчетов для предложенных схем значительно меньше, чем в случае явных схем, несмотря на необходимость решения на каждом шаге систем линейных уравнений. Недостатками схем является ограничение на шаг по времени в случае разрывных или сильно меняющихся решений и необходимость использования экстраполяции значений в граничных точках сосудов. В связи с этим актуальными для дальнейших исследований являются вопросы об адаптации схем расщепления к решению задач с разрывными решениями и в случаях специальных типов условий на концах сосудов.
Difference splitting schemes for the system of one-dimensional equations of hemodynamics
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 459-488The work is devoted to the construction and analysis of difference schemes for a system of hemodynamic equations obtained by averaging the hydrodynamic equations of a viscous incompressible fluid over the vessel cross-section. Models of blood as an ideal and as a viscous Newtonian fluid are considered. Difference schemes that approximate equations with second order on the spatial variable are proposed. The computational algorithms of the constructed schemes are based on the method of splitting on physical processes. According to this approach, at one time step, the model equations are considered separately and sequentially. The practical implementation of the proposed schemes at each time step leads to a sequential solution of two linear systems with tridiagonal matrices. It is demonstrated that the schemes are $\rho$-stable under minor restrictions on the time step in the case of sufficiently smooth solutions.
For the problem with a known analytical solution, it is demonstrated that the numerical solution has a second order convergence in a wide range of spatial grid step. The proposed schemes are compared with well-known explicit schemes, such as the Lax – Wendroff, Lax – Friedrichs and McCormack schemes in computational experiments on modeling blood flow in model vascular systems. It is demonstrated that the results obtained using the proposed schemes are close to the results obtained using other computational schemes, including schemes constructed by other approaches to spatial discretization. It is demonstrated that in the case of different spatial grids, the time of computation for the proposed schemes is significantly less than in the case of explicit schemes, despite the need to solve systems of linear equations at each step. The disadvantages of the schemes are the limitation on the time step in the case of discontinuous or strongly changing solutions and the need to use extrapolation of values at the boundary points of the vessels. In this regard, problems on the adaptation of splitting schemes for problems with discontinuous solutions and in cases of special types of conditions at the vessels ends are perspective for further research.
-
Гидродинамическая активация свертывания крови в стенозированных сосудах. Теоретический анализ
Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 155-183В настоящей работе исследованы гидродинамические механизмы активации плазменного звена системы свертывания крови при числах Рейнольдса в интервале от 10 до 500. Условия активации изучены в рамках модели, предполагающей, что проницаемость сосудистых стенок по отношению к первичным активаторам системы свертывания крови возрастает с увеличением касательного напряжения. Обнаружено несколько характерных сценариев развития процессов тромбообразования. Изучено влияние изменения топологии течения на активацию внутрисосудистого свертывания крови. Установлено, что пороговая активация плазменного звена системы гемостаза в стенозированных сосудах может иметь место не только при ослаблении, но и при интенсификации кровотока. В заключительной части работы обсуждены возможные медицинские приложения полученных результатов.
Ключевые слова: математическое моделирование, свертывание крови, стеноз сосуда, процессы структурообразования.
Hydrodynamical activation of blood coagulation in stenosed vessels. Theoretical analysis
Computer Research and Modeling, 2012, v. 4, no. 1, pp. 155-183Просмотров за год: 2. Цитирований: 5 (РИНЦ).The mechanisms of hydrodynamical activation of blood coagulation system are investigated in stenosed vessels for a wide range of Reynolds number values (from 10 up to 500). It is assumed that the vessel wall permeability for procoagulant factors rapidly increases when wall shear stress exceeds specific threshold value. A number of patterns of blood coagulation processes development are described. The influence of blood flow topology changes on activation of blood coagulation is explored. It is established that not only blood flow decrease, but also its increase may promote activation of blood coagulation. It was found that dependence of thrombogenic danger of stenosis on vessel lumen blockage ratio is non-monotonic. The relevance of obtained theoretical results for clinical practice is discussed.
-
Исследование гидродинамической активации тромбоцитов в артериовенозных фистулах для гемодиализа
Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 703-721Методами математического моделирования изучена гидродинамическая активация тромбоцитов в артериовенозных фистулах, используемых для проведения гемодиализа. Цель работы — найти те конфигурации артериовенозных фистул, риск активации в которых снижен при типичных для фистул скоростей течения. В рамках развитого подхода условием гидродинамической активации считалось превышение кумулятивным напряжением сдвига определенного порога. Величина порога зависела от степени мультимерности макромолекул фактора фон Виллебранда, играющих роль гидродинамических сенсоров у тромбоцитов. В работе было изучено влияние ряда представляющих интерес параметров артериовенозных фистул, таких как величина анастомозного угла, интенсивность кровотока, а также мультимерность макромолекул фактора фон Виллебранда, на активацию тромбоцитов. Построены параметрические диаграммы, позволяющие выделять области параметров, соответствующие наличию или отсутствию гидродинамической активации тромбоцитов. Получены скейлинговые соотношения, характеризующие критические кривые на параметрических диаграммах. Анализ влияния величины анастомозного угла на гидродинамическую активацию тромбоцитов показал, что тупые анастомозные углы должны в меньшей мере приводить к активации, чем острые. Исследование различных типов соединения артерий и вен в артериовенозных фистулах показало, что к числу наиболее безопасных относится конфигурация «конец вены в конец артерии». Для всех исследованных конфигураций артериовенозных фистул критические кривые, разделяющие области на параметрических диаграммах, являются монотонно убывающими функциями от степени мультимерности фактора фон Виллебранда. Выяснилось, что интенсивность кровотока через фистульную вену оказывает существенное влияние на вероятность запуска тромбообразования, в то время как направление течения через дистальную артерию значимо не сказывается на активации тромбоцитов. Полученные результаты позволяют определять конфигурации фистул, наиболее безопасные с точки зрения запуска тромбообразования. Авторы полагают, что результаты работы могут представлять интерес для врачей, выполняющих хирургические операции по созданию артериовенозных фистул для гемодиализа. В заключении обсуждается ряд клинических приложений результатов.
Ключевые слова: математическое моделирование, артериовенозная фистула, напряжение сдвига, активация тромбоцитов, фактор фон Виллебранда.
Investigation of shear-induced platelet activation in arteriovenous fistulas for haemodialysis
Computer Research and Modeling, 2023, v. 15, no. 3, pp. 703-721Numerical modeling of shear-induced platelet activation in haemodialysis arteriovenous fistulas was carried out in this work. The goal was to investigate the mechanisms of threshold shear-induced platelet activation in fistulas. For shear-induced platelet activation to take place, shear stress accumulated by platelets along corresponding trajectories in blood flow had to exceed a definite threshold value. The threshold value of cumulative shear stress was supposed to depend on the multimer size of von Willebrand factor macromolecules acting as hydrodynamic sensors for platelets. The effect of arteriovenous fistulas parameters, such as the anastomotic angle, blood flow rate, and the multimer size of von Willebrand factor macromolecules, on platelet activation risk was studied. Parametric diagrams have been constructed that make it possible to distinguish the areas of parameters corresponding to the presence or absence of shear-induced platelet activation. Scaling relations that approximate critical curves on parametric diagrams were obtained. Analysis showed that threshold fistula flow rate is higher for obtuse anastomotic angle than for sharp ones. This means that a fistula with obtuse angle can be used in wider flow rate range without risk of platelet activation. In addition, a study of different anastomosis configurations of arteriovenous fistulas showed that the configuration “end of vein to end of artery” is among the safest. For all the investigated anastomosis configurations, the critical curves on the parametric diagrams were monotonically decreasing functions of von Willebrand factor multimer size. It was shown that fistula flow rate should have a significant impact on the probability of thrombus formation initiation, while the direction of flow through the distal artery did not affect platelet activation. The obtained results allowed to determine the safest fistula configurations with respect to thrombus formation triggering. The authors believe that the results of the work may be of interest to doctors performing surgical operations for creation of arteriovenous fistulas for haemodialysis. In the final section of the work, possible clinical applications of the obtained results by means of mathematical modeling are discussed.
-
Транспорт и адгезия тромбоцитов в условиях потока крови: роль эритроцитов
Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 185-200Система гемостаза служит организму для экстренного восстановления целостности стенок кровеносных сосудов при их повреждении. Главные компоненты этой системы – тромбоциты (самые маленькие клетки крови) – постоянно содержатся в крови и быстро адгезируют к месту повреждения. Миграция тромбоцитов поперёк потока крови и их попадание на место адгезии определяются характером течения крови и, в частности, физическим присутствием в крови других клеток – эритроцитов. В данном обзоре рассматриваются основные закономерности этого влияния и имеющиеся в литературе математические модели миграции тромбоцитов поперёк потока крови и их адгезии к стенке сосуда, основанные на дифференциальных уравнениях в частных производных вида «конвекция-диффузия». Обсуждаются недавние достижения в данной области. Понимание механизмов указанных процессов необходимо для построения адекватных математических моделей работы гемостатической системы в условиях потока крови в норме и патологии.
Ключевые слова: тромбоциты, течение крови, сдвиговое течение, сегрегация суспензий, адгезия клеток, дифференциальные уравнения типа «конвекция-диффузия».
Platelet transport and adhesion in shear blood flow: the role of erythrocytes
Computer Research and Modeling, 2012, v. 4, no. 1, pp. 185-200Просмотров за год: 3. Цитирований: 8 (РИНЦ).Hemostatic system serves the organism for urgent repairs of damaged blood vessel walls. Its main components – platelets, the smallest blood cells, – are constantly contained in blood and quickly adhere to the site of injury. Platelet migration across blood flow and their hit with the wall are governed by blood flow conditions and, in particular, by the physical presence of other blood cells – erythrocytes. In this review we consider the main regularities of this influence, available mathematical models of platelet migration across blood flow and adhesion based on "convection-diffusion" PDEs, and discuss recent advances in this field. Understanding of the mechanisms of these processes is necessary for building of adequate mathematical models of hemostatic system functioning in blood flow in normal and pathological conditions.
-
Численное моделирование течения жидкости в насосе для перекачки крови в программном комплексе FlowVision
Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 1025-1038В программном комплексе FlowVision проведено численное моделирование течения жидкости в насосе для перекачки крови. Данная тестовая задача, предоставленная Центром устройств и радиологического здоровья Управления по санитарному надзору за качеством пищевых продуктов и медикаментов США, предусматривала рассмотрение течения жидкости в соответствии с несколькими расчетными режимами. При этом для каждого расчетного случая задавалось определенное значение расхода жидкости и скорости вращения ротора. Необходимые для расчетов данные в виде точной геометрии, условий потока и характеристик жидкости были предоставлены всем участникам исследования, использующим для моделирования различные программные комплексы. Во FlowVision численное моделирование проводилось для шести режимов с ньютоновской жидкостью и стандартной моделью турбулентности $k-\varepsilon$, дополнительно были проведены расчеты пятого режима с моделью турбулентности $k-\omega$ SST и с использованием реологической модели жидкости Каро. На первом этапе численного моделирования была исследована сходимость по сетке, на основании которой выбрана итоговая сетка с числом ячеек порядка 6 миллионов. В связи с большим количеством ячеек для ускорения исследования часть расчетов проводилась на кластере «Ломоносов-2». В результате численного моделирования были получены и проанализированы значения перепада давления между входом и выходом насоса, скорости между лопатками ротора и в области диффузора, а также проведена визуализация распределения скорости в определенных сечениях. Для всех расчетных режимов осуществлялось сравнение перепада давления, полученного численно, с экспериментальными данными, а для пятого расчетного режима также производилось сравнение с экспериментом по распределению скорости между лопатками ротора и в области диффузора. Анализ данных показал хорошее соответствие результатов расчетов во FlowVision с результатами эксперимента и численного моделирования в других программных комплексах. Полученные во FlowVision результаты решения теста от Управления по санитарному надзору за качеством пищевых продуктов и медикаментов США позволяют говорить о том, что данный программный комплекс может быть использован для решения широкого спектра задач гемодинамики.
Ключевые слова: насос для перекачки крови, программный комплекс FlowVision, гемодинамика, валидационные расчеты.
Numerical simulation of fluid flow in a blood pump in the FlowVision software package
Computer Research and Modeling, 2023, v. 15, no. 4, pp. 1025-1038A numerical simulation of fluid flow in a blood pump was performed using the FlowVision software package. This test problem, provided by the Center for Devices and Radiological Health of the US. Food and Drug Administration, involved considering fluid flow according to several design modes. At the same time for each case of calculation a certain value of liquid flow rate and rotor speed was set. Necessary data for calculations in the form of exact geometry, flow conditions and fluid characteristics were provided to all research participants, who used different software packages for modeling. Numerical simulations were performed in FlowVision for six calculation modes with the Newtonian fluid and standard $k-\varepsilon$ turbulence model, in addition, the fifth mode with the $k-\omega$ SST turbulence model and with the Caro rheological fluid model were performed. In the first stage of the numerical simulation, the convergence over the mesh was investigated, on the basis of which a final mesh with a number of cells of the order of 6 million was chosen. Due to the large number of cells, in order to accelerate the study, part of the calculations was performed on the Lomonosov-2 cluster. As a result of numerical simulation, we obtained and analyzed values of pressure difference between inlet and outlet of the pump, velocity between rotor blades and in the area of diffuser, and also, we carried out visualization of velocity distribution in certain cross-sections. For all design modes there was compared the pressure difference received numerically with the experimental data, and for the fifth calculation mode there was also compared with the experiment by speed distribution between rotor blades and in the area of diffuser. Data analysis has shown good correlation of calculation results in FlowVision with experimental results and numerical simulation in other software packages. The results obtained in FlowVision for solving the US FDA test suggest that FlowVision software package can be used for solving a wide range of hemodynamic problems.
-
Редуцированная математическая модель свертывания крови с учетом переключения активности тромбина как основа оценки влияния гемодинамических эффектов и ее реализация в пакете FlowVision
Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 1039-1067Рассматривается возможность численного 3D-моделирования образования тромбов.
Известные детальные математические модели формирования тромбов включают в себя большое число уравнений. Для совмещения таких подробных математических моделей с гидродинамическими кодами для моделирования роста тромбов в кровотоке необходимы значительные вычислительные ресурсы. Разумной альтернативой представляется использование редуцированных математических моделей. В настоящей работе описаны две математические модели, основанные на редуцированной математической модели производства тромбина.
Первая модель описывает рост тромбоцитарного тромба в крупном сосуде (артерии). Течения в артериях существенно нестационарные, для артерий характерны пульсовые волны. Скорость течения крови в них велика по сравнению с венозным деревом. Редуцированная модель производства тромбина и тромбообразования в артериях относительно проста. Показано, что процессы производства тромбина хорошо описываются приближением нулевого порядка.
Для вен характерны более низкие скорости, меньшие градиенты и, как следствие, меньшие значения напряжений сдвига. Для моделирования производства тромбина в венах необходимо решать более сложную систему уравнений, учитывающую все нелинейные слагаемые в правых частях.
Моделирование проводится в индустриальном программном комплексе (ПК) FlowVision.
Проведенные тестовые расчеты показали адекватность редуцированных моделей производства тромбина и тромбообразования. В частности, расчеты демонстрируют формирование зоны возвратного течения за тромбом. За счет формирования такой зоны происходит медленный рост тромба в направлении вниз по потоку. В наветренной части тромба концентрация активных тромбоцитов мала, соответственно, рост тромба в направлении вверх по потоку незначителен.
При учете изменения течения в процессе сердечного цикла рост тромба происходит гораздо медленнее, чем при задании осредненных (по сердечному циклу) условий. Тромбин и активированные тромбоциты, наработанные во время диастолы, быстро уносятся потоком крови во время систолы. Заметный эффект оказывает учет неньютоновской реологии крови.
Ключевые слова: гемодинамика, тромб, тромбин, тромбоцит, фибрин, артерия, вена, численное моделирование, вычислительная гидродинамика (ВГД), уравнения Навье – Стокса, уравнения «реакция – диффузия – конвекция», неньютоновская жидкость, метод конечных объемов.
Reduced mathematical model of blood coagulation taking into account thrombin activity switching as a basis for estimation of hemodynamic effects and its implementation in FlowVision package
Computer Research and Modeling, 2023, v. 15, no. 4, pp. 1039-1067The possibility of numerical 3D simulation of thrombi formation is considered.
The developed up to now detailed mathematical models describing formation of thrombi and clots include a great number of equations. Being implemented in a CFD code, the detailed mathematical models require essential computer resources for simulation of the thrombi growth in a blood flow. A reasonable alternative way is using reduced mathematical models. Two models based on the reduced mathematical model for the thrombin generation are described in the given paper.
The first model describes growth of a thrombus in a great vessel (artery). The artery flows are essentially unsteady. They are characterized by pulse waves. The blood velocity here is high compared to that in the vein tree. The reduced model for the thrombin generation and the thrombus growth in an artery is relatively simple. The processes accompanying the thrombin generation in arteries are well described by the zero-order approximation.
A vein flow is characterized lower velocity value, lower gradients, and lower shear stresses. In order to simulate the thrombin generation in veins, a more complex system of equations has to be solved. The model must allow for all the non-linear terms in the right-hand sides of the equations.
The simulation is carried out in the industrial software FlowVision.
The performed numerical investigations have shown the suitability of the reduced models for simulation of thrombin generation and thrombus growth. The calculations demonstrate formation of the recirculation zone behind a thrombus. The concentration of thrombin and the mass fraction of activated platelets are maximum here. Formation of such a zone causes slow growth of the thrombus downstream. At the upwind part of the thrombus, the concentration of activated platelets is low, and the upstream thrombus growth is negligible.
When the blood flow variation during a hart cycle is taken into account, the thrombus growth proceeds substantially slower compared to the results obtained under the assumption of constant (averaged over a hard cycle) conditions. Thrombin and activated platelets produced during diastole are quickly carried away by the blood flow during systole. Account of non-Newtonian rheology of blood noticeably affects the results.
-
Персонализация математических моделей в кардиологии: трудности и перспективы
Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 911-930Большинство биомеханических задач, представляющих интерес для клиницистов, могут быть решены только с помощью персонализированных математических моделей. Такие модели позволяют формализовать и взаимоувязать ключевые патофизиологические процессы, на основе клинически доступных данных оценить неизмеряемые параметры, важные для диагностики заболеваний, спрогнозировать результат терапевтического или хирургического вмешательства. Использование моделей в клинической практике накладывает дополнительные ограничения: практикующие врачи требуют валидации модели на клинических случаях, быстроту и автоматизированность всей расчетной технологической цепочки от обработки входных данных до получения результата. Ограничения на время расчета, определяемые временем принятия врачебного решения (порядка нескольких минут), приводят к необходимости использования методов редукции, корректно описывающих исследуемые процессы в рамках численных моделей пониженной размерности или в рамках методов машинного обучения.
Персонализация моделей требует пациентоориентированной оценки параметров модели и создания персонализированной геометрии расчетной области и построения расчетной сетки. Параметры модели оцениваются прямыми измерениями, либо методами решения обратных задач, либо методами машинного обучения. Требование персонализации моделей накладывает серьезные ограничения на количество настраиваемых параметров модели, которые могут быть измерены в стандартных клинических условиях. Помимо параметров, модели включают краевые условия, которые также должны учитывать особенности пациента. Методы задания персонализированных краевых условий существенно зависят от решаемой клинической задачи, зоны ее интереса и доступных клинических данных. Построение персонализированной области посредством сегментации медицинских изображений и построение расчетной сетки, как правило, занимают значительную долю времени при разработке персонализированной вычислительной модели, так как часто выполняются в ручном или полуавтоматическом режиме. Разработка автоматизированных методов постановки персонализированных краевых условий и сегментации медицинских изображений с последующим построением расчетной сетки является залогом широкого использования математического моделирования в клинической практике.
Цель настоящей работы — обзор и анализ наших решений по персонализации математических моделей в рамках трех задач клинической кардиологии: виртуальной оценки гемодинамической значимости стенозов коронарных артерий, оценки изменений системного кровотока после гемодинамической коррекции сложных пороков сердца, расчета характеристик коаптации реконструированного аортального клапана.
Ключевые слова: вычислительная биомеханика, персонализированная модель.
Personalization of mathematical models in cardiology: obstacles and perspectives
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 911-930Most biomechanical tasks of interest to clinicians can be solved only using personalized mathematical models. Such models allow to formalize and relate key pathophysiological processes, basing on clinically available data evaluate non-measurable parameters that are important for the diagnosis of diseases, predict the result of a therapeutic or surgical intervention. The use of models in clinical practice imposes additional restrictions: clinicians require model validation on clinical cases, the speed and automation of the entire calculated technological chain, from processing input data to obtaining a result. Limitations on the simulation time, determined by the time of making a medical decision (of the order of several minutes), imply the use of reduction methods that correctly describe the processes under study within the framework of reduced models or machine learning tools.
Personalization of models requires patient-oriented parameters, personalized geometry of a computational domain and generation of a computational mesh. Model parameters are estimated by direct measurements, or methods of solving inverse problems, or methods of machine learning. The requirement of personalization imposes severe restrictions on the number of fitted parameters that can be measured under standard clinical conditions. In addition to parameters, the model operates with boundary conditions that must take into account the patient’s characteristics. Methods for setting personalized boundary conditions significantly depend on the clinical setting of the problem and clinical data. Building a personalized computational domain through segmentation of medical images and generation of the computational grid, as a rule, takes a lot of time and effort due to manual or semi-automatic operations. Development of automated methods for setting personalized boundary conditions and segmentation of medical images with the subsequent construction of a computational grid is the key to the widespread use of mathematical modeling in clinical practice.
The aim of this work is to review our solutions for personalization of mathematical models within the framework of three tasks of clinical cardiology: virtual assessment of hemodynamic significance of coronary artery stenosis, calculation of global blood flow after hemodynamic correction of complex heart defects, calculating characteristics of coaptation of reconstructed aortic valve.
Keywords: computational biomechanics, personalized model. -
Использование продолженных систем ОДУ для исследования математических моделей свертывания крови
Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 931-951Многие свойства решений систем обыкновенных дифференциальных уравнений определяются свойствами системы в вариациях. Продолженной системой будем называть систему ОДУ, включающую в себя одновременно исходную нелинейную систему и систему уравнений в вариациях. При исследовании свойств задачи Коши для систем обыкновенных дифференциальных уравнений переход к продолженным системам позволяет исследовать многие тонкие свойства решений. Например, переход к продолженной системе позволяет повысить порядок аппроксимации численных методов, дает подходы к построению функции чувствительности без использования процедур численного дифференцирования, позволяет применять для решения обратной задачи методы повышенного порядка сходимости. Использован метод Бройдена, относящийся к классу квазиньютоновских методов. Для решения жестких систем обыкновенных дифференциальных уравнений применялся метод Розенброка с комплексными коэффициентами. В данном случае он эквивалентен методу второго порядка аппроксимации для продолженной системы.
В качестве примера использования подхода рассматривается несколько связанных между собой математических моделей свертывания крови. По результатам численных расчетов делается вывод о необходимости включения в систему уравнений описания петли положительных обратных связей по фактору свертывания XI. Приводятся оценки некоторых скоростей реакций на основе решения обратной задачи.
Рассматривается влияние освобождения фактора V при активации тромбоцитов. При модификации математической модели удалось достичь количественного соответствия по динамике производства тромбина с экспериментальными данными для искусственной системы. На основе анализа чувствительности проверена гипотеза об отсутствии влияния состава липидной мембраны (числа сайтов для тех или иных факторов системы свертывания, кроме сайтов для тромбина) на динамику процесса.
Ключевые слова: математические модели, система ОДУ, уравнение в вариациях, метод CROS, метод Бройдена, свертывание крови, тромбин, тромбоциты.
Using extended ODE systems to investigate the mathematical model of the blood coagulation
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 931-951Many properties of ordinary differential equations systems solutions are determined by the properties of the equations in variations. An ODE system, which includes both the original nonlinear system and the equations in variations, will be called an extended system further. When studying the properties of the Cauchy problem for the systems of ordinary differential equations, the transition to extended systems allows one to study many subtle properties of solutions. For example, the transition to the extended system allows one to increase the order of approximation for numerical methods, gives the approaches to constructing a sensitivity function without using numerical differentiation procedures, allows to use methods of increased convergence order for the inverse problem solution. Authors used the Broyden method belonging to the class of quasi-Newtonian methods. The Rosenbroke method with complex coefficients was used to solve the stiff systems of the ordinary differential equations. In our case, it is equivalent to the second order approximation method for the extended system.
As an example of the proposed approach, several related mathematical models of the blood coagulation process were considered. Based on the analysis of the numerical calculations results, the conclusion was drawn that it is necessary to include a description of the factor XI positive feedback loop in the model equations system. Estimates of some reaction constants based on the numerical inverse problem solution were given.
Effect of factor V release on platelet activation was considered. The modification of the mathematical model allowed to achieve quantitative correspondence in the dynamics of the thrombin production with experimental data for an artificial system. Based on the sensitivity analysis, the hypothesis tested that there is no influence of the lipid membrane composition (the number of sites for various factors of the clotting system, except for thrombin sites) on the dynamics of the process.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"