Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Приближение классов интегралов Пуассона суммами Фейера
Компьютерные исследования и моделирование, 2015, т. 7, № 4, с. 813-819Получена ассимптотическая формула для верхних граней уклонений сумм Фейера на классах интегралов Пуассона. В ряде случаев полученное соотношение обеспечивает решение задачи Колмогорова–Никольского для сумм Фейера и классов интегралов Пуассона.
Approximation of classes of Poisson integrals by Fejer sums
Computer Research and Modeling, 2015, v. 7, no. 4, pp. 813-819Просмотров за год: 4. Цитирований: 2 (РИНЦ).We obtain asymptotic formula for upper bounds of deviations of Fejer sums on classes of Poisson integrals. Under certain conditions, formula guarantee the solvability of the Kolmogorov–Nikol’skiy problem for Fejer sums and classes of Poisson integrals.
-
Приближение периодических функций высокой гладкости прямоугольными линейными методами
Компьютерные исследования и моделирование, 2011, т. 3, № 3, с. 255-264Получены асимптотические формулы для верхних граней уклонений прямоугольных сумм Валле Пуссена на классах периодических функций двух переменных высокой гладкости. Эти соотношения в некоторых важных случаях обеспечивают решение известной задачи Колмогорова–Никольского для прямоугольных сумм Валле Пуссена и указанных классов функций.
Ключевые слова: (ψ, β)-производная, прямоугольные суммы Валле Пуссена, задача Колмогорова–Никольского.
Approximation of the periodical functions of hight smoothness by the right-angled
linear methods
Computer Research and Modeling, 2011, v. 3, no. 3, pp. 255-264Цитирований: 2 (РИНЦ).We obtain asymptotic equalities for upper bounds of the deviations of the right-angled de la Vallee Poussin sums taken over classes of periodical functions of two variables of high smoothness. These equalities guarantee the solvability of the Kolmogorov–Nikol’skii problem for the right-angled de la Vallee Poussin sums on the specified classes of functions.
-
Приближение периодических функций высокой гладкости прямоугольными линейными средними рядов Фурье
Компьютерные исследования и моделирование, 2012, т. 4, № 3, с. 521-529Получены асимптотические формулы для верхних граней уклонений прямоугольных сумм Валле Пуссена на классах периодических функций многих переменных высокой гладкости. Эти соотношения в некоторых важных случаях обеспечивают решение известной задачи Колмогорова–Никольского для прямоугольных сумм Валле Пуссена и указанных классов функций.
Ключевые слова: (ψ, β)-производная, прямоугольные суммы Валле Пуссена, задача Колмогорова–Никольского.
Approximation of the periodical functions of high smoothness by the right-angled linear means of Fourier series
Computer Research and Modeling, 2012, v. 4, no. 3, pp. 521-529Цитирований: 2 (РИНЦ).We obtain asymptotic equalities for upper bounds of the deviations of the right-angled de la Vallee Poussin sums taken over classes of periodical functions of many variables of high smoothness. These equalities guarantee the solvability of the Kolmogorov–Nikol’skii problem for the right-angled de la Vallee Poussin sums on the specified classes of functions.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"