Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Переход к хаосу в системах «реакция–диффузия». Простейшие модели
Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 3-12Просмотров за год: 6. Цитирований: 1 (РИНЦ).В работе рассматривается появление хаотических аттракторов в системе трех обыкновенных дифференциальных уравнений, возникающих в теории систем «реакция–диффузия». Исследуются динамика соответствующих одномерных и двумерных отображений и ляпуновские показатели возникающих аттракторов. Показано, что переход к хаосу происходит по нетрадиционному сценарию, связанному с многократным рождением и исчезновением хаотических режимов, который ранее был изучен для одномерных отображений с острой вершиной и квадратичным минимумом. С помощью численного анализа были исследованы характерные особенности системы: наличие областей бистабильности и гиперболичности, кризис хаотических аттракторов.
-
Переход от регулярной к хаотической динамике в слабосвязанных вращающихся кластерах
Компьютерные исследования и моделирование, 2009, т. 1, № 1, с. 13-20Просмотров за год: 2.В работе методом Монте-Карло определены доли регулярной и хаотической компонент в динамике трехатомных ван-дер-ваальсовых кластеров при различных значениях полной энергии и углового момента. Используя метод эффективных мод, в работе объяснены немонотонность зависимости объема хаотической компоненты от величины углового момента и причины перехода от регулярного к хаотическому режиму движения.
-
Памяти Алексея Владимировича Борисова
Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 9-1424 января ушел из жизни блестящий ученый, доктор физико-математических наук, профессор, лауреат премии имени С. В. Ковалевской Алексей Владимирович Борисов. Алексей Владимирович родился и вырос в Москве. Окончив среднюю школу, он поступил на факультет специального машиностроения МВТУ им. Н.Э. Баумана. Уже во время учебы Алексей Владимирович посещает научный семинар на механико-математическом факультете Московского государственного университета им. М.В. Ломносова, что во многом определяет направление его будущих исследований. После защиты кандидатской диссертации Алексей Владимирович создает в Ижевске научную группу, его последующая научная биография очень широка: Екатеринбург, Чебоксары, Иннополис, Долгопрудный, Москва. Борисов основывает и воз- главляет серию научных журналов: «Регулярная и хаотическая динамика», «Нелинейная динамика»; является главным редактором в журналах «Вестник Удмуртского университета», «Компьютерные исследования и моделирование». Научное наследие А. В. Борисова обширно, список публикаций составляет более 200 работ, более 170 из которых опубликованы в журналах, индексируемых международными базами Scopus и Web of Science. Его перу принадлежит более 10 монографий.
-
Экспериментальное исследование динамики одиночных и связанных в решетке комплекснозначных отображений: архитектура и интерфейс авторской программы для моделирования
Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1101-1124В работе описывается свободно распространяемая прикладная программа для исследований в области голоморфной динамики на основе вычислительных возможностей среды MATLAB. Программа позволяет строить не только одиночные комплекснозначные отображения, но и их коллективы как линейно связанные, на квадратной или гексагональной решетке. В первом случае строятся аналоги множества Жюлиа (в виде точек убегания с цветовой индикацией скорости убегания), Фату (с выделением хаотической динамики) и множества Мандельброта, порожденного одним из двух свободных параметров. Во втором случае рассматривается только динамика клеточного автомата с комплекснозначным состоянием ячеек и всеми коэффициентами в локальной функции перехода. Абстрактность объектно-ориентированного программирования позволяет объединить оба типа расчета в рамках одной программы, описывающей итеративную динамику одного объекта.
Для формы поля, начальных условий, шаблона окрестности и особенностей окрестности у граничных ячеек предусмотрены опции выбора. Вид отображения может быть задан регулярным для интерпретатора MATLAB выражением. В статье приводятся некоторые UML-диаграммы, краткое введение в пользовательский интерфейс и ряд примеров.
В качестве рабочих иллюстраций, содержащих новое научное знание, были рассмотрены следующие случаи:
1) дробно-линейное отображение вида $Az^{n} +B/z^{n} $, для которого случаи $n=2$, $4$, $n>1$, известны. На портрете множества Фату привлекают внимание характерные (для классического квадратичного отображения) фигурки <<пряничных человечков>>, показывающие короткопериодические режимы, находящиеся в море компоненты условно хаотической динамики;
2) у множества Мандельброта при нестандартном положении параметра в показателе степени $z(t+1)\Leftarrow z(t)^{\mu } $ на эскизных расчетах обнаруживаются некие зубчатые структуры и облака точек, напоминающие пыль Кантора, не являющиеся букетами Кантора, характерными для экспоненциального отображения. В дальнейшем требуется детализация этих объектов со сложной топологией.
-
Стационарные состояния и бифуркации в одномерной активной среде осцилляторов
Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 491-512В предлагаемой статье приводятся результаты аналитического и компьютерного исследования коллективных динамических свойств цепочки автоколебательных систем (условно — осцилляторов). Предполагается, что связи отдельных элементов цепочки являются невзаимными, однонаправленными. Точнее, предполагается, что каждый элемент цепочки находится под воздействием предыдущего, в то время как обратная реакция отсутствует (физически несущественна). В этом состоит главная особенность цепочки. Данную систему можно интерпретировать как активную дискретную среду с однонаправленным переносом, в частности переносом вещества. Подобные цепочки могут являться математическими моделями реальных систем с решеточной структурой, имеющих место в самых различных областях естествознания и техники: в физике, химии, биологии, радиотехнике, экономике и др. Также они могут быть моделями технологических и вычислительных процессов. В качестве элементов решетки выбраны нелинейные автоколебательные системы (условно — осцилляторы) с широким спектром потенциально возможных индивидуальных автоколебаний: от периодических до хаотических. Это позволяет исследовать различные динамические режимы цепочки от регулярных до хаотических, меняя параметры элементов и не меняя природу самих элементов. Совместное применение качественных методов теории динамических систем и качественно-численных методов позволяет получить обозримую картину всевозможных динамических режимов цепочки. Исследуются условия существования и устойчивости пространственно однородных динамических режимов (детерминированных и хаотических) цепочки. Аналитические результаты иллюстрированы численным экспериментом. Исследуются динамические режимы цепочки при возмущениях параметров на ее границе. Показывается возможность управления динамическими режимами цепочки путем включения необходимого возмущения на границе. Рассматриваются различные случаи динамики цепочек, составленных из неоднородных (различных по своим параметрам) элементов. Аналитически и численно исследуется глобальная (всех осцилляторов цепочки) хаотическая синхронизация.
Ключевые слова: динамическая система, решетка, бифуркации, осциллятор, фазовое пространство, динамический хаос, синхронизация.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"