Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
- Просмотров за год: 2.
-
Численное исследование теплового разрушения метеорита «Челябинск» при входе в атмосферу Земли
Компьютерные исследования и моделирование, 2013, т. 5, № 6, с. 941-956Представлена математическая модель для численного исследования теплового разрушения метеорита «Челябинск» при входе в атмосферу Земли. Исследование проводилось в рамках комплексного подхода, включающего расчет траектории движения с учетом сопутствующих движению метеорита физических процессов. Вместе с траекторией определялось поле течения и лучисто-конвективный теплообмен, определялся прогрев и разрушение метеорита под действием рассчитанных тепловых нагрузок. Комплексный подход позволяет точнее определять траекторию движения космических объектов, предсказывать зоны их падения и разрушения.
Ключевые слова: численное исследование, тепловое разрушение, траектория, тепловой поток, температура, эффективная энтальпия, сильный вдув.Цитирований: 4 (РИНЦ). -
CFD-моделирование теплообменных пучков парогенератора с эвтектическим сплавом «свинец–висмут»
Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 861-875В настоящее время ведутся активные разработки ядерных реакторов 4-го поколения с жидкометаллическими теплоносителями, в связи с чем актуальными являются расчеты их элементов и узлов с использованием программ трехмерного моделирования. Теплогидравлический анализ реакторных установок с жидкометаллическим теплоносителем признается одним из важнейших направлений комплекса взаимосвязанных задач по обоснованию параметров реакторных установок, включая обоснование безопасности. Сложность получения необходимой информации об условиях эксплуатации реакторного оборудования с жидкометаллическими теплоносителями на основе экспериментальных исследований требует привлечения численного моделирования. В качестве инструмента, описанного в статье исследования, использован отечественный CFD-код FlowVision, который имеет аттестат НТЦ ЯРБ для расчетного обеспечения безопасности ядерных реакторов. Ранее было доказано успешное применение данного расчетного кода для моделирования процессов в ядерных реакторах с натриевым теплоносителем. Поскольку на данный момент в ядерной отрасли в качестве перспективных реакторов рассматриваются установки со свинцово-висмутовым теплоносителем, необходимо обосновать пригодность кода FlowVision также и для моделирования течения такого теплоносителя, что и являлось целью данной работы. В статье приведены результаты численного моделирования потока свинцово-висмутовой эвтектики в пучке теплообменных труб парогенератора АЭС. В рамках CFD-моделирования процессов гидродинамики и теплообмена в пучке теплообменных труб произведены исследования сходимости по сетке, по шагу, выбрана модель турбулентности, определены коэффициенты гидравлического сопротивления решеток и проведено сравнение расчетов с использованием модели $k_\theta^{}$-$e_\theta^{}$ и без нее. По итогам исследования получено, что результаты расчета с использованием $k_\theta^{}$-$e_\theta^{}$-модели турбулентности более точно согласуются с корреляциями. В качестве дополнительной проверки точности результатов выполнена кросс-верификация с ПО STAR-CCM+, полученные результаты лежат в пределах погрешностей использованных для сравнения корреляций.
-
Разработка методического подхода и численное моделирование теплогидравлических процессов в промежуточном теплообменнике реактора БН
Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 877-894В работе представлены результаты трехмерного численного моделирования теплогидравлических процессов в промежуточном теплообменнике перспективного реактора на быстрых нейтронах с натриевым теплоносителем (БН) с учетом разработанного методического подхода.
Промежуточный теплообменник (ПТО) размещен в корпусе реактора и предназначен для передачи тепла от натрия первого контура, циркулирующего в межтрубном пространстве, натрию второго контура, циркулирующему внутри труб. Перед входными окнами ПТО при интегральной компоновке оборудования первого контура в реакторе БН имеет место температурное расслоение теплоносителя из-за неполного перемешивания разнотемпературных потоков на выходе из активной зоны. Внутри ПТО в районе входных и выходных окон теплообменника также реализуется сложное продольно-поперечное течение теплоносителя, которое приводит к неравномерному распределению расхода теплоносителя в межтрубном пространстве и, как следствие, к неравномерному распределению температуры и эффективности теплообмена по высоте и радиусу трубного пучка.
С целью подтверждения заложенных в проекте теплогидравлических параметров ПТО перспективного реактора БН был разработан методический подход для трехмерного численного моделирования теплообменника, размещенного в корпусе реактора, учитывающий трехмерную картину течения натрия на входе и внутри ПТО, а также обосновывающий рекомендации для упрощения геометрии расчетной модели ПТО. Численное моделирование теплогидравлических процессов в ПТО перспективного реактора БН проводилось с использованием программного комплекса FlowVision со стандартной $k-\varepsilon$-моделью турбулентности и моделью турбулентного теплопереноса LMS. Для повышения представительности численного моделирования трубного пучка ПТО выполнены верификационные расчеты однотрубного и многотрубного теплообменников «натрий – натрий» с соответствующими конструкции ПТО геометрическими характеристиками. Для определения входных граничных условий в модели ПТО выполнен дополнительный трехмерный расчет с учетом неравномерной картины течения в верхней смесительной камере реактора. Расчетная модель ПТО была оптимизирована за счет упрощения дистанционирующих поясов и выбора секторной модели. В результате численного моделирования ПТО получены распределения скорости натрия первого контура, температуры натрия первого и второго контуров. Удовлетворительное согласование результатов расчета с проектными данными по интегральным параметрам подтвердило принятые проектные теплогидравлические характеристики ПТО перспективного реактора БН.
-
Алгоритмы параллельных вычислений в задачах радиационно кондуктивного теплообмена
Компьютерные исследования и моделирование, 2012, т. 4, № 3, с. 543-552Просмотров за год: 2. Цитирований: 5 (РИНЦ).Рассматриваются задачи радиационно-кондуктивного теплообмена в рассеивающем слое, заключающиеся в нахождении температурного профиля и улучшении теплоотдачи от границ слоя. Для их решения применяется итерационный рекурсивный алгоритм, основанный на методе Монте-Карло. Анализируются различные подходы параллелизации предложенного алгоритма.
-
Слоистая конвекция Бенара–Марангони при теплообмене по закону Ньютона–Рихмана
Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 927-940Просмотров за год: 10. Цитирований: 3 (РИНЦ).В работе осуществлено математическое моделирование нестационарной слоистой конвекции Бенара–Марангони вязкой несжимаемой жидкости. Движение жидкости происходит в бесконечно протяженном слое. Система Обербека–Буссинеска, описывающая слоистую конвекцию Бенара–Марангони, является переопределенной, поскольку вертикальная скорость тождественно равна нулю. Для вычисления двух компонент вектора скорости, температурыи давления имеется система пяти уравнений (три уравнения сохранения импульсов, уравнение несжимаемости и уравнение теплопроводности). Для разрешимости системы Обербека–Буссинеска предложен класс точных решений. Структура предложенного решения такова, что уравнение несжимаемости удовлетворяется тождественно. Таким образом, удается устранить «лишнее» уравнение. Основное внимание уделено исследованию теплообмена на свободной границе слоя, которая считается недеформируемой. При описании термокапиллярного конвективного движения теплообмен задавался согласно закону Ньютона–Рихмана. Использование такого закона распространения тепла приводит к начально-краевой задаче третьего рода. Показано, что переопределенная начально-краевая задача в рамках представленного в статье класса точных решений уравнений Обербека–Буссинеска сводится к проблеме Штурма–Лиувилля. Следовательно, гидродинамические поля выражаются через тригонометрические функции (базис Фурье). Для определения собственных чисел задачи получено трансцендентное уравнение, которое решалось численно. Проведен численный анализ решений системы эволюционных и градиентных уравнений, описывающих течение жидкости. На основании вычислительного эксперимента проведен анализ гидродинамических полей. При исследовании краевой задачи было показано существование противотечений в слое жидкости. Существование противотечений эквивалентно наличию застойных точек в жидкости, что говорит о существовании локального экстремума кинетической энергии жидкости. Установлено, что у каждой компонентыск орости может быть не более одного нулевого значения. Таким образом, поток жидкости расслаивается на две зоны. В этих зонах касательные напряжения разного знака. Причем существует толщина слоя жидкости, при которой на нижней границе слоя жидкости касательные напряжения равны нулю. Данный физический эффект возможен только для классических ньютоновских жидкостей. Для поля температурыи давления справедливы те же свойства, что и для скоростей. Отметим, что в данном случае все нестационарные решения выходят на установившийся режим.
-
Влияние силы плавучести на смешанную конвекцию жидкости переменной плотности в квадратной каверне с подвижной крышкой
Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 575-595В работе рассматривается задача стационарной смешанной конвекции и теплообмена вязкой теплопроводной жидкости в плоской квадратной каверне с подвижной верхней крышкой. Нагретая верхняя стенка каверны имеет температуру $T_{\mathrm{H}}$, холодная нижняя — $T_\mathrm{0}$ $(T_\mathrm{H} > T_\mathrm{0})$, а боковые стенки каверны теплоизолированы. Особенностью задачи является тот факт, что плотность жидкости может принимать произвольные значения в зависимости от величины перегрева крышки каверны. Математическая постановка включает в себя уравнения Навье–Стокса в переменных «скорость–давление» и баланса тепла, сформулированные с учетом несжимаемости течения жидкости и воздействия объемной силы плавучести. Разностная аппроксимация исходных дифференциальных уравнений выполнена методом контрольного объема. Численные решения задачи получены на сетке $501 \times 501$ для следующих значений параметров подобия: число Прандтля Pr = 0.70; число Рейнольдса Re = 100, 1000; число Ричардсона Ri = 0.1, 1, 10 и относительный перегрев верхней стенки $(T_\mathrm{H} − T_\mathrm{0})/T_\mathrm{0} = 0, 1, 2, 3$. Достоверность полученных результатов подтверждена их сравнением с литературными данными. Представлены подробные картины течения в виде линий тока и изотерм перегрева потока. Показано, что увеличение значения числа Ричардсона (рост влияния силы плавучести) приводит к принципиальному изменению структуры течения жидкости. Также установлено, что учет переменности плотности жидкости приводит к ослаблению влияния роста Ri на трансформацию структуры течения. Это связано с тем, что изменение плотности в замкнутом объеме всегда приводит к возникновению зон с отрицательной плавучестью. Как следствие, конкуренция положительных и отрицательных объемных сил приводит в целом к ослаблению эффекта плавучести. Также проанализировано поведение коэффициентов теплоотдачи (числа Нуссельта) и трения вдоль нижней стенки каверны в зависимости от параметров задачи. Выявлено, что влияние переменности плотности на эти коэффициенты тем больше, чем большие значения при прочих равных условиях принимает число Ричардсона.
-
Разработка методики расчетного анализа теплогидравлических процессов в реакторе на быстрых нейтронах с применением кода FlowVision
Компьютерные исследования и моделирование, 2017, т. 9, № 1, с. 87-94Просмотров за год: 6. Цитирований: 1 (РИНЦ).В статье описан подход к расчетному анализу теплогидравлических процессов в реакторе на быстрых нейтронах (БН), включающий применяемые физические модели, численные схемы и упрощения реальной конструкции, принятые в расчетной модели. Рассмотрены стационарные и динамические режимы испытаний. Стационарные режимы имитировали работу реактора на номинальной мощности. Динамические режимы имитировали расхолаживание реактора через систему отвода тепла. Моделирование теплогидравлических процессов проведено в программном комплексе (ПК) FlowVision. На основе геометрической модели была построена математическая модель, описывающая течение теплоносителя в первом контуре имитатора реактора типа БН.
Моделирование течения и теплообмена рабочего вещества в имитаторе реактора выполнено в предположении независимости плотности вещества от давления, с использованием $k–\varepsilon$ модели турбулентности, с применением модели дисперсной среды и с учетом сопряженного теплообмена. Реализованная в ПК FlowVision модель дисперсной среды позволила учесть процесс теплообмена между контурами в теплообменниках. Из-за большого количества расчетных ячеек по модели активной зоны области двух теплообменных аппаратов были заменены гидравлическими сопротивлениями и стоками тепла.
Моделирование течения теплоносителя в ПК FlowVision позволило получить распределения температуры, скорости и давления во всей расчетной области. В результате использования модели дисперсной среды были получены распределения температуры теплоносителей по обоим контурам теплообменников. Определено изменение температуры теплоносителя вдоль двух термозондов, которые располагались в холодной и горячей камерах имитатора реактора БН. На основе сравнительного анализа численных и экспериментальных данных сделаны выводы о корректности построенной математической модели и возможности ее использования для моделирования теплогидравлических процессов, протекающих в реакторах с натриевым теплоносителем типа БН.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"