Текущий выпуск Номер 5, 2020 Том 12
Результаты поиска по 'смешанная конвекция':
Найдено статей: 4
  1. От редакции
    Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 5-7
    Просмотров за год: 27.
  2. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 471-473
  3. Проведено численное исследование нестационарных режимов смешанной конвекции в открытом частично пористом горизонтальном канале при наличии тепловыделяющего элемента. Наружные поверхности горизонтальных стенок конечной толщины являлись адиабатическими. В канале находилась ньютоновская теплопроводная жидкость, вязкость которой зависит от температуры по экспоненцильному закону. Дискретный тепловыделяющий теплопроводный элемент расположен внутри нижней стенки канала. Температура жидкости равна температуре твердого скелета внутри пористой вставки, и расчеты ведутся в рамках модели теплового равновесия. Пористая вставка изотропна, однородна и проницаема для жидкости. Для моделирования пористой среды использована модель Дарси–Бринкмана. Математическая модель, сформулированная в безразмерных преобразованных переменных «функция тока – завихренность скорости – температура» на основе приближения Буссинеска, реализована численно с помощью метода конечных разностей. Уравнения дисперсии завихренности и энергии решались на основе локально-одномерной схемы А.А. Самарского. Диффузионные слагаемые аппроксимировались центральными разностями, конвективные — с использованием монотонной аппроксимации А.А. Самарского. Разностные уравнения решались методом прогонки. Разностное уравнение Пуассона для функции тока решалось отдельно, с применением метода последовательной верхней релаксации. Оптимальное значение параметра релаксации подбиралось на основе вычислительных экспериментов. Разработанная вычислительная модель была протестирована на множестве равномерных сеток, а также верифицирована путем сравнения полученных результатов при решении модельной задачи с данными других авторов.

    Численные исследования нестационарных режимов смешанной конвекции жидкости с переменной вязкостью в горизонтальном канале с тепловыделяющим источником были проведены при следующих значениях безразмерных параметров: $\mathrm{Pr} = 7.0$, $\varepsilon = 0.8$, $\mathrm{Gr} = 10^5$, $C = 0-1$, $10^{-5} < \mathrm{Da} < 10^{-1}$, $50 < \mathrm{Re} < 500$, $\delta = l/H = 0.6-3$. Все распределения изолиний функции тока и температуры, а также зависимости среднего числа Нуссельта и средней температуры были получены в стационарном режиме, когда наблюдается установление картины течения и теплопереноса. В результате анализа установлено, что введение пористой вставки позволяет интенсифицировать теплосъем с поверхности источника энергии. Увеличение размеров пористой ставки, а также использование рабочих сред с разными теплофизическими характеристиками приводят к снижению температуры в источнике энергии.

    Просмотров за год: 34.
  4. Фомин А.А., Фомина Л.Н.
    Влияние силы плавучести на смешанную конвекцию жидкости переменной плотности в квадратной каверне с подвижной крышкой
    Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 575-595

    В работе рассматривается задача стационарной смешанной конвекции и теплообмена вязкой теплопроводной жидкости в плоской квадратной каверне с подвижной верхней крышкой. Нагретая верхняя стенка каверны имеет температуру $T_{\mathrm{H}}$, холодная нижняя — $T_\mathrm{0}$ $(T_\mathrm{H} > T_\mathrm{0})$, а боковые стенки каверны теплоизолированы. Особенностью задачи является тот факт, что плотность жидкости может принимать произвольные значения в зависимости от величины перегрева крышки каверны. Математическая постановка включает в себя уравнения Навье–Стокса в переменных «скорость–давление» и баланса тепла, сформулированные с учетом несжимаемости течения жидкости и воздействия объемной силы плавучести. Разностная аппроксимация исходных дифференциальных уравнений выполнена методом контрольного объема. Численные решения задачи получены на сетке $501 \times 501$ для следующих значений параметров подобия: число Прандтля Pr = 0.70; число Рейнольдса Re = 100, 1000; число Ричардсона Ri = 0.1, 1, 10 и относительный перегрев верхней стенки $(T_\mathrm{H} − T_\mathrm{0})/T_\mathrm{0} = 0, 1, 2, 3$. Достоверность полученных результатов подтверждена их сравнением с литературными данными. Представлены подробные картины течения в виде линий тока и изотерм перегрева потока. Показано, что увеличение значения числа Ричардсона (рост влияния силы плавучести) приводит к принципиальному изменению структуры течения жидкости. Также установлено, что учет переменности плотности жидкости приводит к ослаблению влияния роста Ri на трансформацию структуры течения. Это связано с тем, что изменение плотности в замкнутом объеме всегда приводит к возникновению зон с отрицательной плавучестью. Как следствие, конкуренция положительных и отрицательных объемных сил приводит в целом к ослаблению эффекта плавучести. Также проанализировано поведение коэффициентов теплоотдачи (числа Нуссельта) и трения вдоль нижней стенки каверны в зависимости от параметров задачи. Выявлено, что влияние переменности плотности на эти коэффициенты тем больше, чем большие значения при прочих равных условиях принимает число Ричардсона.

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал входит в Перечень российских рецензируемых научных журналов, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученых степеней доктора и кандидата наук ВАК, группы специальностей: 01.01.00, 01.02.00.
 

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал индексируется в Scopus