Текущий выпуск Номер 3, 2024 Том 16

Все выпуски

Результаты поиска по 'теплообмен':
Найдено статей: 12
  1. Аксёнов А.А., Жлуктов С.В., Шмелев В.В., Шапоренко Е.В., Шепелев С.Ф., Рогожкин С.А., Крылов А.Н.
    Расчетные исследования процесса перемешивания неизотермических потоков натриевого теплоносителя в тройнике
    Компьютерные исследования и моделирование, 2017, т. 9, № 1, с. 95-110

    В программном комплексе FlowVision проведено численное моделирование процесса перемешивания неизотермических потоков натриевого теплоносителя в тройнике для обоснования применимости различных подходов — URANS (Unsteady Reynolds Averaged Navier Stokers), LES (Large Eddy Simulation) и квази-DNS (Direct Numerical Simulation) — для предсказания осциллирующего характера течения в зоне смешения и получения температурных пульсаций. Одна из основных задач данной работы — выявление преимуществ и недостатков использования этих подходов.

    Численное исследование пульсаций температуры, возникающих в жидкости и в стенках тройника в процессе перемешивания неизотермических потоков натриевого теплоносителя, проведено в рамках математической модели, предполагающей, что рассматриваемое течение турбулентное, плотность жидкости не зависит от давления и что между теплоносителем и стенками тройника происходит теплообмен. При моделировании турбулентного теплопереноса в рамках подхода URANS применялась модель турбулентного теплопереноса LMS.

    Исследование было проведено в два этапа. На предварительном этапе были определены влияние расчетной сетки на формирование осциллирующего течения и характер температурных пульсаций в рамках указанных выше подходов к моделированию турбулентности. В результате этого исследования были выработаны критерии построения расчетных сеток для каждого из подходов и произведена оценка потребных вычислительных ресурсов.

    Затем были проведены расчеты для трех режимов течения, отличающихся соотношением расходов и температур натрия во входных сечениях тройника. Для каждого режима выполнены расчеты с применением подходов URANS, LES и квази-DNS.

    На заключительном этапе работы был проведен сравнительный анализ численных и экспериментальных данных. Определены и сформулированы преимущества и недостатки использования каждого из указанных подходов к моделированию процесса перемешивания неизотермических потоков натриевого теплоносителя в тройнике.

    Просмотров за год: 3.
  2. Сорокин К.Э., Аксёнов А.А., Жлуктов С.В., Бабулин А.А., Шевяков В.И.
    Методика расчета обледенения воздушных судов в широком диапазоне климатических и скоростных параметров. Применение в рамках норм летной годности НЛГ-25
    Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 957-978

    Сертификация самолетов транспортной категории для эксплуатации в условияхо бледенения в России ранее проводилась в рамках требований приложения С к «Авиационным правилам» (АП-25). Во введенном в действие с 2023 года, взамен АП-25, документе «Нормы летной годности» (НЛГ-25) добавлено и приложение О. Отличительной особенностью приложения О является необходимость проведения расчетов в условиях большой водности и с крупными каплями воды (500 мкм и более). При таких параметрах дисперсного потока определяющими становятся такие физические процессы, как срыв и разбрызгивание пленки воды при попадании в нее крупных капель. Поток дисперсной среды в такиху словиях является существенно полидисперсным. В данной работе описываются модификации методики расчета обледенения самолетов IceVision, реализованной на базе программного комплекса FlowVision, необходимые для проведения расчетов обледенения самолетов в рамках приложения О.

    Главное отличие методики IceVision от известных подходов заключается в использовании технологии Volume of fluid (VOF — объем жидкости в ячейке) для отслеживания изменения формы льда. Внешнее обтекание самолета рассчитывается одновременно с нарастанием льда и его прогревом. Лед присутствует в расчетной области явно, в нем решается уравнение теплопереноса. В отличие от лагранжевых подходов, в IceVision эйлерова расчетная сетка не перестраивается полностью. Изменение объема льда сопровождается только модификацией ячеек сетки, через которые проходит контактная поверхность.

    В версии IceVision 2.0 реализован учет срыва водяной пленки, а также отскока и разбрызгивания падающих капель на поверхности самолета и льда. Диаметр вторичных капель рассчитывается с использованием известных эмпирических корреляций. Скорость течения пленки воды по поверхности определяется с учетом действия аэродинамических сил, силы тяжести, градиента гидростатического давления и силы поверхностного натяжения. Результатом учета поверхностного натяжения является эффект поперечного стягивания пленки, приводящий к образованию потоков воды в форме ручейков и ледяных отложений в виде гребнеобразных наростов. На поверхности льда выполняется балансовое соотношение, учитывающее энергию падающих капель, теплообмен между льдом и воздухом, теплоту кристаллизации, испарения, сублимации и конденсации. В работе приводятся результаты решения тестовых и модельных расчетных задач, демонстрирующие эффективность методики IceVision и достоверность полученных результатов.

Страницы: предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.