Текущий выпуск Номер 4, 2020 Том 12
Результаты поиска по 'бегущие волны':
Найдено статей: 10
  1. Борина М.Ю., Полежаев А.А.
    О механизме переключения стоячей волны в бегущую, сопровождающегося делением длины волны пополам
    Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 673-679

    В данной работе предложен возможный механизм перехода из режима стоячих волн с длиной волны λSW в режим бегущих волн с половинной длиной волны: λTW ≅λSW / 2. Такой переход был обнаружен в пространственно распределенной реакции Белоусова–Жаботинского, диспергированной в обращенной микроэмульсии аэрозоля OT [Kaminaga el al., 2005]. Задача решалась в пространственно одномерном случае с использованием аппарата амплитудных уравнений типа Гинзбурга–Ландау. Показано, что переход возможен при выполнении определенных условий. Выведены условия на силы связи между взаимодействующими модами, при выполнении которых в модели реализуется сценарий перехода от стоячей к бегущей волне половинного периода, наблюдаемый в эксперименте. Результат теоретического анализа подтверждается численным моделированием.

    Просмотров за год: 2. Цитирований: 1 (РИНЦ).
  2. От редакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 673-675
    Просмотров за год: 1.
  3. От редакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 357-359
    Просмотров за год: 3.
  4. Борина М.Ю., Полежаев А.А.
    Исследование механизмов формирования сегментированных волн в активных средах
    Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 533-542

    В данной работе предложены три возможных механизма формирования сегментированных волн и спиралей. Структуры такого рода были обнаружены в реакции Белоусова–Жаботинского, диспергированной в обращенной микроэмульсии аэрозоля OT. Первый механизм обусловлен взаимодействием двух подсистем, одна из которых возбудима, а другая неустойчива по Тьюрингу. Показано, как под воздействием поперечной неустойчивости из однородной гладкой спиральной волны формируется сегментированная спираль. В зависимости от свойств подсистем мы демонстрируем несколько различных по виду и форме сегментированных спиральных волн. В качестве второго механизма мы предлагаем «дробление» бегущей волны в окрестности бифуркационной точки коразмерности два, в которой пересекаются границы тьюринговской и волновой неустойчивостей. Наконец, мы показываем, что сегментированные волны могут возникать в некоторых простых двухкомпонентных моделях типа «реакция–диффузия», имеющих более одного стационарного состояния, в частности, в модели ФитцХью–Нагумо.

    Цитирований: 3 (РИНЦ).
  5. Хазова Ю.А.
    Бегущие волныв параболической задаче с преобразованием поворота на окружности
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 705-716

    Оптические системы с двумерной обратной связью демонстрируют широкие возможности по исследованию процессов зарождения и развития диссипативных структур. Обратная связь позволяет воздействовать на динамику оптической системы посредством управляемого преобразования пространственных переменных, выполняемых призмами, линзами, динамическими голограммами и другими устройствами. Нелинейный интерферометр с зеркальным отражением поля в двумерной обратной связи является одной из наиболее простых оптических систем, в которых реализуется нелокальный характер взаимодействия световых полей.

    Математической моделью оптических систем с двумерной обратной связью является нелинейное параболическое уравнение с преобразованием поворота пространственной переменной и условиями периодичности на окружности.

    Исследуются вопросы бифуркации рождения стационарных структур типа бегущей волны, эволюции их форм при уменьшении бифуркационного параметра (коэффициента диффузии) и динамики их устойчивости при отходе от критического значения параметра бифуркации и дальнейшем его уменьшении. Впервые в качестве бифуркационного параметра был взят коэффициент диффузии.

    В работе используются метод центральных многообразий и метод Галёркина. На основе метода центральных многообразий доказана теорема о существовании, форме и устойчивости решения типа бегущей волны в окрестности бифуркационного значения коэффициента диффузии. Получено представление первой бегущей волны, рождающейся в результате бифуркации Андронова–Хопфа при переходе бифуркационного параметра через критическое значение. Согласно теореме о центральном многообразии первая бегущая волна рождается орбитально устойчивой.

    Поскольку доказанная теорема дает возможность исследовать рожденные решения только в окрестности критического значения бифуркационного параметра, то для изучения динамики изменений решения типа бегущей волны при отходе бифуркационного параметра в область надкритичности был использован формализм метода Галёркина. В соответствии с методом центральных многообразий составлена галёркинская аппроксимация приближенных решений поставленной задачи. При уменьшении параметра бифуркации и его переходе через критическое значение нулевое решение задачи теряет устойчивость колебательным образом. В результате от нулевого решения ответвляется периодическое решение типа бегущей волны. Эта волна рождается орбитально устойчивой. При дальнейшем уменьшении параметра и его прохождении через следующее критическое значение от нулевого решения в результате бифуркации Андронова–Хопфа рождается второе решение типа бегущей волны. Данная волна рождается неустойчивой, с индексом неустойчивости два.

    Численные расчеты с помощью пакета Mathematica показали, что применение метода Галёркина приводит к качественно и количественно правильным результатам. Полученные результаты хорошо согласуются с результатами, полученными другими авторами, и могут быть использованы для постановки экспериментов по изучению явлений в оптических системах с обратной связью.

    Просмотров за год: 11. Цитирований: 5 (РИНЦ).
  6. Кривовичев Г.В.
    Исследование устойчивости разностных схем метода решеточных уравнений Больцмана для моделирования диффузии
    Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 485-500

    В работе исследуется устойчивость разностных схем, применяемых в методе решеточных уравнений Больцмана для моделирования диффузии в одномерном случае для решеток D1Q2 и D1Q3. Разностные схемы строятся для системы линейных кинетических уравнений Бхатнагара–Гросса–Крука (БГК) относительно одночастичных функций распределения. Проведен краткий обзор работ других авторов. С использованием мультискейлингового разложения методом Чепмена–Энскога показано, что система уравнений БГК при малых числах Кнудсена сводится к линейному уравнению диффузии. Решение уравнения диффузии находится как сумма функций распределения. С использованием метода бегущих волн показана асимптотическая устойчивость решения задачи Коши для системы кинетических уравнений типа БГК во всем диапазоне времени релаксации. С помощью метода дифференциального приближения показана устойчивость разностной схемы для случая решетки D1Q2. Условие устойчивости получено в виде неравенства на значения времени релаксации. Исследуется возможность сведения анализа устойчивости разностных схем для системы уравнений БГК к анализу схем специального вида для уравнения диффузии в случае решетки D1Q3. Численное исследование устойчивости проводилось с помощью метода фон Неймана. В ходе анализа исследовались величины модулей собственных значений матрицы перехода в пространстве параметров разностной схемы. Показано, что в широком диапазоне изменения параметров модули собственных значений не превосходят единицы, что говорит об устойчивости схемы по начальным условиям.

    Просмотров за год: 2. Цитирований: 1 (РИНЦ).
  7. Демлов П., Люнгфириа Х., Мюллер С.К.
    Эффекты воздействия электрического поля на химические структуры
    Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 705-718

    Волны возбуждения являются прообразом самоорганизующихся динамических структур в неравновесных системах. Они характеризуются своей собственной внутренней динамикой, приводящей к формированию бегущих волн различных типов и форм. Яркие примеры — это вращающиеся спирали и скрученные свитки. Интересная и сложная задача — найти способы управления их поведением, применяя внешние сигналы, влияющие на распространяющиеся волны. В качестве такого воздействия мы используем внешние электрические поля, наложенные на возбудимую реакцию Белоусова–Жаботинского (БЖ). Существенные эффекты влияния полей на волны включают изменение скорости волны, обращение направления распространения, взаимное уничтожение вращающихся в противоположных направлениях спиральных волн и переориентацию нитей скрученных свитков. Эти эффекты могут быть объяснены в численных экспериментах, при этом существенную роль играет отрицательно заряженный ингибиторбромид. Эффекты электрического поля также были исследованы в биологических возбудимых средах, таких как социальные амебы Dictyostelium discoideum. Совсем недавно мы начали исследовать влияние электрического поля на реакцию БЖ, протекающую в водно-масляной микроэмульсии. Удалось наблюдать дрейф сложных структур, а также изменение вязкости и электрической проводимости. Мы обсуждаем предположение, что эта система может выступать в качестве модели для дальнодействующего взаимодействия между нейронами.

    Просмотров за год: 8.
  8. Галочкина Т.В., Вольперт В.А.
    Математическое моделирование распространения тромбина в процессе свертывания крови
    Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 469-486

    В случае повреждения сосуда или контакта плазмы крови с чужеродной поверхностью запускается цепь химических реакций (каскад свертывания), ведущая к формированию кровяного сгустка (тромба), основу которого составляют волокна фибрина. Ключевым компонентом каскада свертывания крови является фермент тромбин, катализирующий образование фибрина из фибриногена. Распределение концентрации тромбина определяет пространственно-временную динамику формирования кровяного сгустка. Контактный путь активации системы свертывания запускает реакцию образования тромбина в ответ на контакт с отрицательно заряженной поверхностью. Если концентрация тромбина, произведенного на этом этапе, достаточно велика, дальнейшее образование тромбина идет за счет положительных обратных связей каскада свертывания. В результате тромбин распространяется в плазме, что приводит к расщеплению фибриногена и формированию тромба. Профиль концентрации и скорость распространения тромбина в плазме постоянны и не зависят от того, как было активировано свертывание.

    Подобное поведение системы свертывания хорошо описывается решениями типа бегущей волны в системе уравнений «реакция – диффузия» на концентрации факторов крови, принимающих участие в каскаде свертывания. В настоящей работе проводится подробный анализма тематической модели, описывающей основные реакции каскада свертывания. Формулируются необходимые и достаточные условия существования решений системы типа бегущей волны. Для рассмотренной модели существование таких решений является эквивалентным существованию волновых решений упрощенной модели, полученной с помощью квазистационарного приближения и состоящей из одного уравнения, описывающего динамику концентрации тромбина.

    Упрощенная модель также позволяет нам получить аналитические оценки скорости распространения волны тромбина в рассматриваемых моделях. Скорость бегущей волны для одного уравнения была оценена с использованием метода узкой зоны реакции и с помощью кусочно-линейного приближения. Полученные формулы дают хорошее приближение скорости распространения волны тромбина как в упрощенной, так и в исходной модели.

    Просмотров за год: 10. Цитирований: 1 (РИНЦ).
  9. Говорухин В.Н., Загребнева А.Д.
    Популяционные волны и их бифуркации в модели «активный хищник – пассивная жертва»
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 831-843

    В работе изучаются пространственно-временные режимы, реализующиеся в системе типа «хищник– жертва». Предполагается, что хищники перемещаются направленно и случайно, а жертвы распространяются только диффузионно. Демографические процессы в популяции хищников не учитываются, их общая численность постоянна и является параметром. Переменные модели — плотности популяций хищников и жертв, скорость хищников — связаны между собой системой трех уравнений типа «реакция – диффузия – адвекция». Система рассматривается на кольцевом ареале (с периодическими условиями на границах интервала). Исследуются бифуркации волновых режимов при изменении двух параметров — общего количества хищников и их коэффициента таксисного ускорения.

    Основным методом исследования является численный анализ. Пространственная аппроксимация задачи в частных производных производится методом конечных разностей. Интегрирование полученной системы обыкновенных дифференциальных уравнений по времени проводится методом Рунге – Кутты. Для анализа динамических режимов используются построение отображения Пуанкаре, расчет показателей Ляпунова и спектр Фурье.

    Показано, что популяционные волны в предположениях модели могут возникать в результате направленных перемещений хищников. Динамика в системе качественно меняется при росте их общего количества. При малых значениях устойчив стационарный однородный режим, который сменяется автоколебаниями в виде бегущих волн. Форма волн претерпевает изменения с ростом бифуркационного параметра, ее усложнение происходит за счет увеличения числа временных колебательных мод. Большой коэффициент таксисного ускорения приводит к переходу от многочастотных к хаотическим и гиперхаотическим популяционным волнам. При большом количестве хищников реализуется стационарный режим с отсутствием жертв.

  10. Аристов В.В., Ильин О.В.
    Описание быстрых процессов вторжения на основе кинетической модели
    Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 829-838

    В последние годы моделирование социальных, социо-биологических и исторических процессов получило большое развитие. В настоящей работе на основе кинетического подхода моделируются исторические процессы: агрессивное вторжение нацистской Германии в Польшу, Францию и СССР. Показано, что изучаемая система нелинейных уравнений полностью интегрируема: общее решение строится в виде квадратур. Вторжение (блицкриг) описывается краевой задачей Коши для двухэлементной кинетической модели с однородными по двум частям пространства начальными условиями. Решение данной задачи имеет вид бегущей волны, а скорость смещения линии фронта зависит от отношения начальных концентраций войск. Полученные оценки скорости распространения фронта согласуются с историческими фактами.

    Просмотров за год: 4. Цитирований: 1 (РИНЦ).

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал входит в Перечень российских рецензируемых научных журналов, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученых степеней доктора и кандидата наук ВАК, группы специальностей: 01.01.00, 01.02.00.
 

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал индексируется в Scopus