Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Моделирование смешанной конвекции жидкости с переменной вязкостью в частично пористом горизонтальном канале с источником тепловыделения
Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 95-107Проведено численное исследование нестационарных режимов смешанной конвекции в открытом частично пористом горизонтальном канале при наличии тепловыделяющего элемента. Наружные поверхности горизонтальных стенок конечной толщины являлись адиабатическими. В канале находилась ньютоновская теплопроводная жидкость, вязкость которой зависит от температуры по экспоненцильному закону. Дискретный тепловыделяющий теплопроводный элемент расположен внутри нижней стенки канала. Температура жидкости равна температуре твердого скелета внутри пористой вставки, и расчеты ведутся в рамках модели теплового равновесия. Пористая вставка изотропна, однородна и проницаема для жидкости. Для моделирования пористой среды использована модель Дарси–Бринкмана. Математическая модель, сформулированная в безразмерных преобразованных переменных «функция тока – завихренность скорости – температура» на основе приближения Буссинеска, реализована численно с помощью метода конечных разностей. Уравнения дисперсии завихренности и энергии решались на основе локально-одномерной схемы А.А. Самарского. Диффузионные слагаемые аппроксимировались центральными разностями, конвективные — с использованием монотонной аппроксимации А.А. Самарского. Разностные уравнения решались методом прогонки. Разностное уравнение Пуассона для функции тока решалось отдельно, с применением метода последовательной верхней релаксации. Оптимальное значение параметра релаксации подбиралось на основе вычислительных экспериментов. Разработанная вычислительная модель была протестирована на множестве равномерных сеток, а также верифицирована путем сравнения полученных результатов при решении модельной задачи с данными других авторов.
Численные исследования нестационарных режимов смешанной конвекции жидкости с переменной вязкостью в горизонтальном канале с тепловыделяющим источником были проведены при следующих значениях безразмерных параметров: $\mathrm{Pr} = 7.0$, $\varepsilon = 0.8$, $\mathrm{Gr} = 10^5$, $C = 0-1$, $10^{-5} < \mathrm{Da} < 10^{-1}$, $50 < \mathrm{Re} < 500$, $\delta = l/H = 0.6-3$. Все распределения изолиний функции тока и температуры, а также зависимости среднего числа Нуссельта и средней температуры были получены в стационарном режиме, когда наблюдается установление картины течения и теплопереноса. В результате анализа установлено, что введение пористой вставки позволяет интенсифицировать теплосъем с поверхности источника энергии. Увеличение размеров пористой ставки, а также использование рабочих сред с разными теплофизическими характеристиками приводят к снижению температуры в источнике энергии.
Ключевые слова: смешанная конвекция, зависящая от температуры вязкость, тепловыделяющий источник, пористая среда, открытый канал, метод конечных разностей.
Simulation of mixed convection of a variable viscosity fluid in a partially porous horizontal channel with a heat-generating source
Computer Research and Modeling, 2019, v. 11, no. 1, pp. 95-107Просмотров за год: 34.Numerical study of unsteady mixed convection in an open partially porous horizontal channel with a heatgenerating source was performed. The outer surfaces of horizontal walls of finite thickness were adiabatic. In the channel there was a Newtonian heat-conducting fluid with a temperature-dependent viscosity. The discrete heatconducting and heat-generating source is located inside the bottom wall. The temperature of the fluid phase was equal to the temperature of the porous medium, and calculations were performed using the local thermal equilibrium model. The porous insertion is isotropic, homogeneous and permeable to fluid. The Darcy–Brinkman model was used to simulate the transport process within the porous medium. Governing equations formulated in dimensionless variables “stream function – vorticity – temperature” using the Boussinesq approximation were solved numerically by the finite difference method. The vorticity dispersion equation and energy equation were solved using locally one-dimensional Samarskii scheme. The diffusive terms were approximated by central differences, while the convective terms were approximated using monotonic Samarskii scheme. The difference equations were solved by the Thomas algorithm. The approximated Poisson equation for the stream function was solved separately by successive over-relaxation method. Optimal value of the relaxation parameter was found on the basis of computational experiments. The developed computational code was tested using a set of uniform grids and verified by comparing the results obtained of other authors.
Numerical analysis of unsteady mixed convection of variable viscosity fluid in the horizontal channel with a heat-generating source was performed for the following parameters: $\mathrm{Pr} = 7.0$, $\varepsilon = 0.8$, $\mathrm{Gr} = 10^5$, $C = 0-1$, $10^{-5} < \mathrm{Da} < 10^{-1}$, $50 < \mathrm{Re} < 500$, $\delta = l/H = 0.6-3$. Distributions of the isolines of the stream function, temperature and the dependences of the average Nusselt number and the average temperature inside the heater were obtained in a steady-state regime, when the stationary picture of the flow and heat transfer is observed. As a result we showed that an addition of a porous insertion leads to an intensification of heat removal from the surface of the energy source. The increase in the porous insertion sizes and the use of working fluid with different thermal characteristics, lead to a decrease in temperature inside the source.
-
Анализ диссипативных свойств гибридного метода крупных частиц для структурно сложных течений газа
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 757-772Изучаются вычислительные свойства параметрического класса конечно-объемных схем с настраиваемыми диссипативными свойствами с расщеплением по физическим процессам на лагранжев, эйлеров и заключительный этапы (гибридный метод крупных частиц). Метод обладает вторым порядком аппроксимации по пространству и времени на гладких решениях. Регуляризация численного решения на лагранжевом этапе осуществляется нелинейной коррекцией искусственной вязкости, величина которой, независимо от разрешения сетки, стремится к нулю вне зоны разрывови экстремумовв решении. На эйлеровом и заключительном этапе вначале реконструируются примитивные переменные (плотность, скорость и полная энергия) путем взвешенной ограничителем потоков аддитивной комбинации противопоточной и центральной аппроксимаций. Затем из них формируются численные дивергентные потоки. При этом выполняются дискретные аналоги законов сохранения.
Выполнен анализ диссипативных свойств метода с использованием известных ограничителей вязкости и потоков, а также их линейной комбинации. Разрешающая способность схемы и качество численных решений продемонстрированы на примерах двумерных тестов с обтеканием ступеньки потоком газа с числами Маха 3, 10 и 20, двойным маховским отражением сильной ударной волны и с импульсным сжатием газа. Изучено влияние схемной вязкости метода на численное воспроизведение неустойчивости на контактных поверхностях газов. Установлено, что уменьшение уровня диссипативных свойств схемы в задаче с импульсным сжатием газа приводит к разрушению симметричного решения и формированию хаотической неустойчивости на контактной поверхности.
Численные решения сопоставлены с результатами других авторов, полученных по схемам повышенного порядка аппроксимации: КАБАРЕ, HLLC (Harten Lax van Leer Contact), CFLFh (CFLF hybrid scheme), JT (centered scheme with limiter by Jiang and Tadmor), PPM (Piecewise Parabolic Method), WENO5 (weighted essentially non-oscillatory scheme), RKGD (Runge–Kutta Discontinuous Galerkin), с гибридной взвешенной нелинейной интерполяцией CCSSR-HW4 и CCSSR-HW6. К достоинствам гибридного метода крупных частиц относятся расширенные возможности решения задач гиперболического и смешанного типов, хорошее соотношение диссипативных и дисперсионных свойств, сочетание алгоритмической простоты и высокой разрешающей способности в задачах со сложной ударно-волновой структурой, развитием неустойчивости и вихреобразованием на контактных границах.
Ключевые слова: гибридный метод крупных частиц, регулирование диссипативных свойств, ударные волны, вихревая структура, неустойчивость на контактных границах.
Analysis of dissipative properties of a hybrid large-particle method for structurally complicated gas flows
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 757-772We study the computational properties of a parametric class of finite-volume schemes with customizable dissipative properties with splitting by physical processes into Lagrangian, Eulerian, and the final stages (the hybrid large-particle method). The method has a second-order approximation in space and time on smooth solutions. The regularization of a numerical solution at the Lagrangian stage is performed by nonlinear correction of artificial viscosity. Regardless of the grid resolution, the artificial viscosity value tends to zero outside the zone of discontinuities and extremes in the solution. At Eulerian and final stages, primitive variables (density, velocity, and total energy) are first reconstructed by an additive combination of upwind and central approximations weighted by a flux limiter. Then numerical divergent fluxes are formed from them. In this case, discrete analogs of conservation laws are performed.
The analysis of dissipative properties of the method using known viscosity and flow limiters, as well as their linear combination, is performed. The resolution of the scheme and the quality of numerical solutions are demonstrated by examples of two-dimensional benchmarks: a gas flow around the step with Mach numbers 3, 10 and 20, the double Mach reflection of a strong shock wave, and the implosion problem. The influence of the scheme viscosity of the method on the numerical reproduction of a gases interface instability is studied. It is found that a decrease of the dissipation level in the implosion problem leads to the symmetric solution destruction and formation of a chaotic instability on the contact surface.
Numerical solutions are compared with the results of other authors obtained using higher-order approximation schemes: CABARET, HLLC (Harten Lax van Leer Contact), CFLFh (CFLF hybrid scheme), JT (centered scheme with limiter by Jiang and Tadmor), PPM (Piecewise Parabolic Method), WENO5 (weighted essentially non-oscillatory scheme), RKGD (Runge –Kutta Discontinuous Galerkin), hybrid weighted nonlinear schemes CCSSR-HW4 and CCSSR-HW6. The advantages of the hybrid large-particle method include extended possibilities for solving hyperbolic and mixed types of problems, a good ratio of dissipative and dispersive properties, a combination of algorithmic simplicity and high resolution in problems with complex shock-wave structure, both instability and vortex formation at interfaces.
-
Об определении модельной скорости звука для решения задачи о плоском сдвиговом течении жидкости методом гидродинамики сглаженных частиц
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 339-351Дискретизация задач по методу гидродинамики сглаженных частиц (SPH) предполагает присутствие в решении нескольких констант — параметров дискретизации. Среди них особо следует отметить модельную скорость звука $c_0$, которая связывает мгновенную плотность в SPH-частице с возникающим давлением через замыкающее уравнение состояния.
В работе изложен подход к точному определению необходимого значения модельной скорости звука, имеющий в своей основе анализ изменения плотностей в SPH-частицах при их относительном смещении. Примером движения сплошной среды принята задача о плоском сдвиговом течении; объектом анализа является функция относительного уплотнения $\varepsilon_\rho$ в SPH-частице, определяемая формой ядра сглаживания. Идеальный плоскопараллельный относительный сдвиг частиц в области сглаживания определяет периодическое изменение их плотностей. Исследование функций $\varepsilon_\rho$, получаемых от использования различных ядер сглаживания в аппроксимации плотности с учетом такого сдвига, позволило установить пульсационный характер возникновения давлений в частицах. Кроме того, определен случай расположения соседей в области сглаживания, обеспечивающий максимум уплотнения в частице.
Сопоставление функций $\varepsilon_\rho$ с SPH-аппроксимацией уравнения движения позволило связать параметр дискретизации $c_0$ с формой ядра сглаживания и прочими параметрами дискретного аналога задачи, в том числе коэффициентом искусственной диссипации. В результате сформулировано уравнение, обеспечивающее нахождение необходимого и достаточного для решения значения модельной скорости звука. Для трех представителей ядер сглаживания приведены выражения корня $c_0$ такого уравнения, упрощенные из полиномов до числовых коэффициентов при параметрах рассматриваемой задачи.
Ключевые слова: плоское сдвиговое течение, метод сглаженных частиц (SPH), ядро, дискретная аппроксимация физического свойства, изменение дискретной аппроксимации во времени, замыкающее уравнение состояния, искусственная диссипация, скорость звука.
The model sound speed determination for the plane shear fluid flow problem solving by the SPH method
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 339-351The problem discrete statement by the smoothed particle hydrodynamics method (SPH) include a discretization constants parameters set. Of them particular note is the model sound speed $c_0$, which relates the SPH-particle instantaneous density to the resulting pressure through the equation of state.
The paper describes an approach to the exact determination of the model sound speed required value. It is on the analysis based, how SPH-particle density changes with their relative shift. An example of the continuous medium motion taken the plane shear flow problem; the analysis object is the relative compaction function $\varepsilon_\rho$ in the SPH-particle. For various smoothing kernels was research the functions of $\varepsilon_\rho$, that allowed the pulsating nature of the pressures occurrence in particles to establish. Also the neighbors uniform distribution in the smoothing domain was determined, at which shaping the maximum of compaction in the particle.
Through comparison the function $\varepsilon_\rho$ with the SPH-approximation of motion equation is defined associate the discretization parameter $c_0$ with the smoothing kernel shape and other problem parameters. As a result, an equation is formulated that the necessary and sufficient model sound speed value provides finding. For such equation the expressions of root $c_0$ are given for three different smoothing kernels, that simplified from polynomials to numerical coefficients for the plane shear flow problem parameters.
-
Высокорейнольдсовые расчеты турбулентного теплопереноса в программном комплексе FlowVision
Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 461-481В работе представлена модель тепловых пристеночных функций FlowVision (WFFV), позволяющая моделировать неизотермические течения жидкости и газа около твердых поверхностей на относительно грубых сетках с использованием различных моделей турбулентности. Настоящая работа продолжает исследование по разработке модели пристеночных функций, применимой в широком диапазоне значений величины y+. Модель WFFV предполагает гладкие профили касательной составляющей скорости, турбулентной вязкости, температуры и турбулентной теплопроводности около твердой поверхности. В работе исследуется возможность использования простой алгебраической модели для вычисления переменного турбулентного числа Прандтля, входящего в модель WFFV в качестве параметра. Результаты удовлетворительные. Обсуждаются особенности реализации модели WFFV в программном комплексе FlowVision. В частности, обсуждается граничное условие для уравнения энергии, используемое в высокорейнольдсовых расчетах неизотермических течений. Граничное условие выводится для уравнения энергии, записанного через термодинамическую энтальпию, и для уравнения энергии, записанного через полную энтальпию. Возможности модели демонстрируются на двух тестовых задачах: течение несжимаемой жидкости около пластины и сверхзвуковое течение газа около пластины (M = 3).
Анализ литературы показывает, что в экспериментальных данных и, как следствие, в эмпирических корреляциях для числа Стэнтона (безразмерного теплового потока) присутствует существенная неопределенность. Результаты расчетов дают основание полагать, что значения параметров модели WFFV, автоматически задаваемые в программе по умолчанию, позволяют рассчитывать тепловые потоки на твердых протяженных поверхностях с инженерной погрешностью. В то же время очевидно, что невозможно изобрести универсальные пристеночные функции. По этой причине управляющие параметры модели WFFV выведены в интерфейс FlowVision. При необходимости пользователь может настраивать модель на нужный класс течений.
Предлагаемая модель пристеночных функций совместима со всеми реализованными в программном комплексе FlowVision моделями турбулентности: Смагоринского, Спаларта–Аллмараса, SST $k-\omega$, $k-\varepsilon$ стандартной, $k-\varepsilon$ Abe Kondoh Nagano, $k-\varepsilon$ квадратичной и $k-\varepsilon$ FlowVision.
Ключевые слова: турбулентный пограничный слой, высокорейнольдсовые расчеты, пристеночные функции, несжимаемая жидкость, сжимаемый газ, неизотермическое течение, тепловой поток, пластина.
High-Reynolds number calculations of turbulent heat transfer in FlowVision software
Computer Research and Modeling, 2018, v. 10, no. 4, pp. 461-481Просмотров за год: 23.This work presents the model of heat wall functions FlowVision (WFFV), which allows simulation of nonisothermal flows of fluid and gas near solid surfaces on relatively coarse grids with use of turbulence models. The work follows the research on the development of wall functions applicable in wide range of the values of quantity y+. Model WFFV assumes smooth profiles of the tangential component of velocity, turbulent viscosity, temperature, and turbulent heat conductivity near a solid surface. Possibility of using a simple algebraic model for calculation of variable turbulent Prandtl number is investigated in this study (the turbulent Prandtl number enters model WFFV as parameter). The results are satisfactory. The details of implementation of model WFFV in the FlowVision software are explained. In particular, the boundary condition for the energy equation used in high-Reynolds number calculations of non-isothermal flows is considered. The boundary condition is deduced for the energy equation written via thermodynamic enthalpy and via full enthalpy. The capability of the model is demonstrated on two test problems: flow of incompressible fluid past a plate and supersonic flow of gas past a plate (M = 3).
Analysis of literature shows that there exists essential ambiguity in experimental data and, as a consequence, in empirical correlations for the Stanton number (that being a dimensionless heat flux). The calculations suggest that the default values of the model parameters, automatically specified in the program, allow calculations of heat fluxes at extended solid surfaces with engineering accuracy. At the same time, it is obvious that one cannot invent universal wall functions. For this reason, the controls of model WFFV are made accessible from the FlowVision interface. When it is necessary, a user can tune the model for simulation of the required type of flow.
The proposed model of wall functions is compatible with all the turbulence models implemented in the FlowVision software: the algebraic model of Smagorinsky, the Spalart-Allmaras model, the SST $k-\omega$ model, the standard $k-\varepsilon$ model, the $k-\varepsilon$ model of Abe, Kondoh, Nagano, the quadratic $k-\varepsilon$ model, and $k-\varepsilon$ model FlowVision.
-
Моделирование гидроупругого отклика пластины, установленной на нелинейно-упругом основании и взаимодействующей с пульсирующим слоем жидкости
Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 581-597В работе сформулирована математическая модель гидроупругих колебаний пластины на нелинейно-упрочняющемся основании, взаимодействующей с пульсирующим слоем вязкой жидкости. В предложенной модели, в отличие от известных, совместно учтены упругие свойства пластины, нелинейность ее основания, а также диссипативные свойства жидкости и инерция ее движения. Модель представлена системой уравнений двумерной задачи гидроупругости, включающей: уравнение динамики пластины Кирхгофа на упругом основании с жесткой кубической нелинейностью, уравнения Навье – Стокса, уравнение неразрывности, краевые условия для прогибов пластины, давления жидкости на торцах пластины, а также для скоростей движения жидкости на границах контакта жидкости и ограничивающих ее стенок. Исследование модели проведено методом возмущений с последующим использованием метода итерации для уравнений тонкого слоя вязкой жидкости. В результате определен закон распределения давления жидкости на поверхности пластины и осуществлен переход к интегро-дифференциальному уравнению изгибных гидроупругих колебаний пластины. Данное уравнение решено методом Бубнова – Галёркина с применением метода гармонического баланса для определения основного гидроупругого отклика пластины и фазового сдвига. Показано, что исходная задача может быть сведена к исследованию обобщенного уравнения Дуффинга, в котором коэффициенты при инерционных, диссипативных и жесткостных членах определяются физико-механическими параметрами исходной системы. Найдены основной гидроупругий отклик пластины и фазовый сдвиг, проведено их численное исследование при учете инерции движения жидкости и для ползущего движения жидкости при нелинейно- и линейно-упругом основании пластины. Результаты расчетов показали необходимостьу чета вязкости жидкости и инерции ее движения совместно с упругими свойствами пластины и ее основания как для нелинейных колебаний, так и для линейных колебаний пластины.
Ключевые слова: моделирование, пластина, нелинейно-упрочняющееся основание, пульсирующая вязкая жидкость, нелинейные колебания, гидроупругий отклик, фазовый сдвиг.
Modelling hydroelastic response of a plate resting on a nonlinear foundation and interacting with a pulsating fluid layer
Computer Research and Modeling, 2023, v. 15, no. 3, pp. 581-597The paper formulates a mathematical model for hydroelastic oscillations of a plate resting on a nonlinear hardening elastic foundation and interacting with a pulsating fluid layer. The main feature of the proposed model, unlike the wellknown ones, is the joint consideration of the elastic properties of the plate, the nonlinearity of elastic foundation, as well as the dissipative properties of the fluid and the inertia of its motion. The model is represented by a system of equations for a twodimensional hydroelasticity problem including dynamics equation of Kirchhoff’s plate resting on the elastic foundation with hardening cubic nonlinearity, Navier – Stokes equations, and continuity equation. This system is supplemented by boundary conditions for plate deflections and fluid pressure at plate ends, as well as for fluid velocities at the bounding walls. The model was investigated by perturbation method with subsequent use of iteration method for the equations of thin layer of viscous fluid. As a result, the fluid pressure distribution at the plate surface was obtained and the transition to an integrodifferential equation describing bending hydroelastic oscillations of the plate is performed. This equation is solved by the Bubnov –Galerkin method using the harmonic balance method to determine the primary hydroelastic response of the plate and phase response due to the given harmonic law of fluid pressure pulsation at plate ends. It is shown that the original problem can be reduced to the study of the generalized Duffing equation, in which the coefficients at inertial, dissipative and stiffness terms are determined by the physical and mechanical parameters of the original system. The primary hydroelastic response and phases response for the plate are found. The numerical study of these responses is performed for the cases of considering the inertia of fluid motion and the creeping fluid motion for the nonlinear and linearly elastic foundation of the plate. The results of the calculations showed the need to jointly consider the viscosity and inertia of the fluid motion together with the elastic properties of the plate and its foundation, both for nonlinear and linear vibrations of the plate.
-
Модель установившегося течения реки в поперечном сечении изогнутого русла
Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1163-1178Моделирование русловых процессов при исследовании береговых деформаций русла требует вычисления параметров гидродинамического потока, учитывающих существование вторичных поперечных течений, формирующихся на закруглении русла. Трехмерное моделирование таких процессов на текущий момент возможно только для небольших модельных каналов, для реальных речных потоков необходимы модели пониженной размерности. При этом редукция задачи от трехмерной модели движения речного потока к двумерной модели потока в плоскости створа канала предполагает, что рассматриваемый гидродинамический поток является квазистационарным, и для него выполнены гипотезы об асимптотическом поведении потока по потоковой координате створа. С учетом данных ограничений в работе сформулирована математическая модель задачи о движении стационарного турбулентного спокойного речного потока в створе канала. Задача сформулирована в смешанной постановке скорости — «вихрь – функция тока». В качестве дополнительных условий для редукции задачи требуется задание граничных условий на свободной поверхности потока для поля скорости, определяемого в нормальном и касательном направлении к оси створа. Предполагается, что значения данных скоростей должны быть определены из решения вспомогательных задач или получены из данных натурных или экспериментальных измерений.
Для решения сформулированной задачи используется метод конечных элементов в формулировке Петрова – Галёркина. Получен дискретный аналог задачи и предложен алгоритм ее решения. Выполненные численные исследования показали в целом хорошую согласованность полученных решений при их сравнении с известными экспериментальными данными.
Полученные погрешности авторы связывают с необходимостью более точного определения циркуляционного поля скоростей в створе потока путем подбора и калибровки более подходящей модели вычисления турбулентной вязкости и граничных условий на свободной границе створа.
Model of steady river flow in the cross section of a curved channel
Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1163-1178Modeling of channel processes in the study of coastal channel deformations requires the calculation of hydrodynamic flow parameters that take into account the existence of secondary transverse currents formed at channel curvature. Three-dimensional modeling of such processes is currently possible only for small model channels; for real river flows, reduced-dimensional models are needed. At the same time, the reduction of the problem from a three-dimensional model of the river flow movement to a two-dimensional flow model in the cross-section assumes that the hydrodynamic flow under consideration is quasi-stationary and the hypotheses about the asymptotic behavior of the flow along the flow coordinate of the cross-section are fulfilled for it. Taking into account these restrictions, a mathematical model of the problem of the a stationary turbulent calm river flow movement in a channel cross-section is formulated. The problem is formulated in a mixed formulation of velocity — “vortex – stream function”. As additional conditions for problem reducing, it is necessary to specify boundary conditions on the flow free surface for the velocity field, determined in the normal and tangential direction to the cross-section axis. It is assumed that the values of these velocities should be determined from the solution of auxiliary problems or obtained from field or experimental measurement data.
To solve the formulated problem, the finite element method in the Petrov – Galerkin formulation is used. Discrete analogue of the problem is obtained and an algorithm for solving it is proposed. Numerical studies have shown that, in general, the results obtained are in good agreement with known experimental data. The authors associate the obtained errors with the need to more accurately determine the circulation velocities field at crosssection of the flow by selecting and calibrating a more appropriate model for calculating turbulent viscosity and boundary conditions at the free boundary of the cross-section.
-
Применение метода линий тока для ускорения расчетов неизотермической нелинейной фильтрации
Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 709-728Работа посвящена численному моделированию плоской неизотермической нелинейной фильтрации в пористой среде. Рассматривается двумерная нестационарная задача течения высоковязкой нефти, воды и пара с фазовыми переходами. Нефтяная фаза представлена двумя псевдокомпонентами: легкой и тяжелой фракциями, которые, как и водный компонент, могут присутствовать в газовой фазе. Нефть проявляет вязкопластическую реологию, ее фильтрация не подчиняется классическому линейному закону Дарси. При моделировании учтена не только зависимость плотности и вязкости флюидов от температуры, но и улучшение реологических свойств нефти с ростом температуры.
Для численного решения задачи применен метод линий тока с расщеплением по физическим процессам, заключающийся в отделении конвективного переноса, направленного вдоль скорости фильтрации, от теплопроводности и гравитации. Предложен новый подход применения метода линий тока, позволяющий корректно моделировать задачи нелинейной фильтрации с реологией, зависящей от температуры. Суть этого алгоритма заключается в рассмотрении процесса интегрирования как совокупности квазиравновесных состояний, которые достигаются путем решения системы на глобальной сетке и между которыми решение проводится на сетке из линий тока. Использование метода линий тока позволяет не только ускорить расчеты фильтрации, но и получить физически достоверную картину решения, так как интегрирование системы происходит на сетке, совпадающей с направлением течения флюидов.
Помимо метода линий тока, в работе представлен алгоритм учета негладких коэффициентов, возникающих при решении уравнения течения вязкопластической нефти. Использование этого алгоритма позволяет сохранить достаточно большой шаг по времени и не изменяет физическую картину решения.
Полученные результаты сопоставлены с известными аналитическими решениями, а также с результатами, полученными при расчете в коммерческом пакете. Анализ проведенных тестовых расчетов на сходимость по количеству линий тока, а также на разных сетках на линиях тока обосновывает применимость предлагаемого алгоритма, а уменьшение времени расчета, по сравнению с традиционными методами, демонстрирует практическую значимость этого подхода.
Ключевые слова: расщепление по физическим процессам, метод линий тока, композиционное моделирование, нелинейная фильтрация.
Application of the streamline method for nonlinear filtration problems acceleration
Computer Research and Modeling, 2018, v. 10, no. 5, pp. 709-728Просмотров за год: 18.The paper contains numerical simulation of nonisothermal nonlinear flow in a porous medium. Twodimensional unsteady problem of heavy oil, water and steam flow is considered. Oil phase consists of two pseudocomponents: light and heavy fractions, which like the water component, can vaporize. Oil exhibits viscoplastic rheology, its filtration does not obey Darcy's classical linear law. Simulation considers not only the dependence of fluids density and viscosity on temperature, but also improvement of oil rheological properties with temperature increasing.
To solve this problem numerically we use streamline method with splitting by physical processes, which consists in separating the convective heat transfer directed along filtration from thermal conductivity and gravitation. The article proposes a new approach to streamline methods application, which allows correctly simulate nonlinear flow problems with temperature-dependent rheology. The core of this algorithm is to consider the integration process as a set of quasi-equilibrium states that are results of solving system on a global grid. Between these states system solved on a streamline grid. Usage of the streamline method allows not only to accelerate calculations, but also to obtain a physically reliable solution, since integration takes place on a grid that coincides with the fluid flow direction.
In addition to the streamline method, the paper presents an algorithm for nonsmooth coefficients accounting, which arise during simulation of viscoplastic oil flow. Applying this algorithm allows keeping sufficiently large time steps and does not change the physical structure of the solution.
Obtained results are compared with known analytical solutions, as well as with the results of commercial package simulation. The analysis of convergence tests on the number of streamlines, as well as on different streamlines grids, justifies the applicability of the proposed algorithm. In addition, the reduction of calculation time in comparison with traditional methods demonstrates practical significance of the approach.
-
Моделирование взаимодействия стенки канала с упругозакрепленным торцевым уплотнением
Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 387-400В работе предложена новая математическая модель для исследования динамики взаимодействия продольной стенки узкого канала с его торцевым уплотнением — торцевой стенкой, имеющей упругое закрепление. В рамках данной модели взаимодействие указанных стенок происходит через слой вязкой жидкости, заполняющей канал, и ранее не исследовалось. Это потребовало постановки и решения задачи гидроупругости. Поставленная задача состоит из уравнений Навье–Стокса, уравнения неразрывности, уравнения динамики торцевой стенки как одномассовой модели и соответствующих краевых условий. На первом этапе задача исследована при ползучем течении. На втором этапе исследования данное ограничение снимается и, при использовании метода итераций, осуществлено обобщение исходной задачи с учетом инерции движения жидкости. Решение сформулированной задачи позволило определить законы распределения скоростей и давления в слое жидкости, а также закон движения торцевой стенки. Показано, что при ползучем течении физические свойства слоя жидкости и геометрические размеры канала полностью определяют демпфирование в рассматриваемой колебательной системе. При этом на демпфирующие свойства слоя жидкости оказывает влияние как скорость движения торцевой стенки, так и скорость движения продольной стенки. Найдены выражения для коэффициентов демпфирования слоя жидкости в продольном и поперечном направлении. При учете сил инерции жидкости выявлено их влияние на колебания торцевой стенки, проявляющиеся в виде двух присоединенных масс в уравнении ее движения. Определены выражения для указанных присоединенных масс. Для режима установившихся гармонических колебаний построены амплитудно-частотные и фазово-частотные характеристики торцевой стенки, учитывающие демпфирующие и инерционные свойства слоя вязкой жидкости в канале. Моделирование показало, что совместный учет инерции движения слоя жидкости в канале и его демпфирующих свойств приводит к сдвигу резонансных частот колебаний в низкочастотную область и возрастанию амплитуд колебаний торцевой стенки.
Ключевые слова: гидроупругие колебания, торцевая стенка, вязкая жидкость, сильфон, частотные характеристики.
Modeling of a channel wall interaction with an end seal flexibly restrained at the edge
Computer Research and Modeling, 2020, v. 12, no. 2, pp. 387-400The paper proposes a new mathematical model to study the interaction dynamics of the longitudinal wall of a narrow channel with its end seal. The end seal was considered as the edge wall on a spring, i.e. spring-mass system. These walls interaction occurs via a viscous liquid filling the narrow channel; thus required the formulation and solution of the hydroelasticity problem. However, this problem has not been previously studied. The problem consists of the Navier–Stokes equations, the continuity equation, the edge wall dynamics equation, and the corresponding boundary conditions. Two cases of fluid motion in a narrow channel with parallel walls were studied. In the first case, we assumed the liquid motion as the creeping one, and in the second case as the laminar, taking into account the motion inertia. The hydroelasticty problem solution made it possible to determine the distribution laws of velocities and pressure in the liquid layer, as well as the motion law of the edge wall. It is shown that during creeping flow, the liquid physical properties and the channel geometric dimensions completely determine the damping in the considered oscillatory system. Both the end wall velocity and the longitudinal wall velocity affect the damping properties of the liquid layer. If the fluid motion inertia forces were taken into account, their influence on the edge wall vibrations was revealed, which manifested itself in the form of two added masses in the equation of its motion. The added masses and damping coefficients of the liquid layer due to the joint consideration of the liquid layer inertia and its viscosity were determined. The frequency and phase responses of the edge wall were constructed for the regime of steady-state harmonic oscillations. The simulation showed that taking into account the fluid layer inertia and its damping properties leads to a shift in the resonant frequencies to the low-frequency region and an increase in the oscillation amplitudes of the edge wall.
-
Nonlinear modeling of oscillatory viscoelastic fluid with variable viscosity: a comparative analysis of dual solutions
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 409-431The viscoelastic fluid flow model across a porous medium has captivated the interest of many contemporary researchers due to its industrial and technical uses, such as food processing, paper and textile coating, packed bed reactors, the cooling effect of transpiration and the dispersion of pollutants through aquifers. This article focuses on the influence of variable viscosity and viscoelasticity on the magnetohydrodynamic oscillatory flow of second-order fluid through thermally radiating wavy walls. A mathematical model for this fluid flow, including governing equations and boundary conditions, is developed using the usual Boussinesq approximation. The governing equations are transformed into a system of nonlinear ordinary differential equations using non-similarity transformations. The numerical results obtained by applying finite-difference code based on the Lobatto IIIa formula generated by bvp4c solver are compared to the semi-analytical solutions for the velocity, temperature and concentration profiles obtained using the homotopy perturbation method (HPM). The effect of flow parameters on velocity, temperature, concentration profiles, skin friction coefficient, heat and mass transfer rate, and skin friction coefficient is examined and illustrated graphically. The physical parameters governing the fluid flow profoundly affected the resultant flow profiles except in a few cases. By using the slope linear regression method, the importance of considering the viscosity variation parameter and its interaction with the Lorentz force in determining the velocity behavior of the viscoelastic fluid model is highlighted. The percentage increase in the velocity profile of the viscoelastic model has been calculated for different ranges of viscosity variation parameters. Finally, the results are validated numerically for the skin friction coefficient and Nusselt number profiles.
Ключевые слова: viscoelastic fluid model, variable viscosity, Lorentz force, porous channel, oscillatory flow, HPM, heat transfer.
Nonlinear modeling of oscillatory viscoelastic fluid with variable viscosity: a comparative analysis of dual solutions
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 409-431The viscoelastic fluid flow model across a porous medium has captivated the interest of many contemporary researchers due to its industrial and technical uses, such as food processing, paper and textile coating, packed bed reactors, the cooling effect of transpiration and the dispersion of pollutants through aquifers. This article focuses on the influence of variable viscosity and viscoelasticity on the magnetohydrodynamic oscillatory flow of second-order fluid through thermally radiating wavy walls. A mathematical model for this fluid flow, including governing equations and boundary conditions, is developed using the usual Boussinesq approximation. The governing equations are transformed into a system of nonlinear ordinary differential equations using non-similarity transformations. The numerical results obtained by applying finite-difference code based on the Lobatto IIIa formula generated by bvp4c solver are compared to the semi-analytical solutions for the velocity, temperature and concentration profiles obtained using the homotopy perturbation method (HPM). The effect of flow parameters on velocity, temperature, concentration profiles, skin friction coefficient, heat and mass transfer rate, and skin friction coefficient is examined and illustrated graphically. The physical parameters governing the fluid flow profoundly affected the resultant flow profiles except in a few cases. By using the slope linear regression method, the importance of considering the viscosity variation parameter and its interaction with the Lorentz force in determining the velocity behavior of the viscoelastic fluid model is highlighted. The percentage increase in the velocity profile of the viscoelastic model has been calculated for different ranges of viscosity variation parameters. Finally, the results are validated numerically for the skin friction coefficient and Nusselt number profiles.
-
Моделирование реологических характеристик водных суспензий на основе наноразмерных частиц диоксида кремния
Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1217-1252Реологическое поведение водных суспензий на основе наноразмерных частиц диоксида кремния сильно зависит от динамической вязкости, которая непосредственно влияет на применение наножидкостей. Целью данной работы являются разработка и валидация моделей для прогнозирования динамической вязкости от независимых входных параметров: концентрации диоксида кремния SiO2, кислотности рН, а также скорости сдвига $\gamma$. Проведен анализ влияния состава суспензии на ее динамическую вязкость. Выявлены статистически однородные по составу группы суспензий, в рамках которых возможна взаимозаменяемость составов. Показано, что при малых скоростях сдвига реологические свойства суспензий существенно отличаются от свойств, полученных на более высоких скоростях. Установлены значимые положительные корреляции динамической вязкости суспензии с концентрацией SiO2 и кислотностью рН, отрицательные — со скоростью сдвига $\gamma$. Построены регрессионные модели с регуляризацией зависимости динамической вязкости $\eta$ от концентраций SiO2, NaOH, H3PO4, ПАВ (поверхностно-активное вещество), ЭДА (этилендиамин), скорости сдвига $\gamma$. Для более точного прогнозирования динамической вязкости были обучены модели с применением алгоритмов нейросетевых технологий и машинного обучения (многослойного перцептрона MLP, сети радиальной базисной функции RBF, метода опорных векторов SVM, метода случайного леса RF). Эффективность построенных моделей оценивалась с использованием различных статистических метрик, включая среднюю абсолютную ошибку аппроксимации (MAE), среднюю квадратическую ошибку (MSE), коэффициент детерминации $R^2$, средний процент абсолютного относительного отклонения (AARD%). Модель RF показала себя как лучшая модель на обучающей и тестовой выборках. Определен вклад каждой компоненты в построенную модель, показано, что наибольшее влияние на динамическую вязкость оказывает концентрация SiO2, далее кислотность рН и скорость сдвига $\gamma$. Точность предлагаемых моделей сравнивается с точностью ранее опубликованных в литературе моделей. Результаты подтверждают, что разработанные модели можно рассматривать как практический инструмент для изучения поведения наножидкостей, в которых используются водные суспензии на основе наноразмерных частиц диоксида кремния.
Ключевые слова: наножидкость, концентрация SiO$_2$, кислотность рН, динамическая вязкость, регрессия, нейронные сети, машинное обучение.
Modeling of rheological characteristics of aqueous suspensions based on nanoscale silicon dioxide particles
Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1217-1252The rheological behavior of aqueous suspensions based on nanoscale silicon dioxide particles strongly depends on the dynamic viscosity, which affects directly the use of nanofluids. The purpose of this work is to develop and validate models for predicting dynamic viscosity from independent input parameters: silicon dioxide concentration SiO2, pH acidity, and shear rate $\gamma$. The influence of the suspension composition on its dynamic viscosity is analyzed. Groups of suspensions with statistically homogeneous composition have been identified, within which the interchangeability of compositions is possible. It is shown that at low shear rates, the rheological properties of suspensions differ significantly from those obtained at higher speeds. Significant positive correlations of the dynamic viscosity of the suspension with SiO2 concentration and pH acidity were established, and negative correlations with the shear rate $\gamma$. Regression models with regularization of the dependence of the dynamic viscosity $\eta$ on the concentrations of SiO2, NaOH, H3PO4, surfactant (surfactant), EDA (ethylenediamine), shear rate γ were constructed. For more accurate prediction of dynamic viscosity, the models using algorithms of neural network technologies and machine learning (MLP multilayer perceptron, RBF radial basis function network, SVM support vector method, RF random forest method) were trained. The effectiveness of the constructed models was evaluated using various statistical metrics, including the average absolute approximation error (MAE), the average quadratic error (MSE), the coefficient of determination $R^2$, and the average percentage of absolute relative deviation (AARD%). The RF model proved to be the best model in the training and test samples. The contribution of each component to the constructed model is determined. It is shown that the concentration of SiO2 has the greatest influence on the dynamic viscosity, followed by pH acidity and shear rate γ. The accuracy of the proposed models is compared to the accuracy of models previously published. The results confirm that the developed models can be considered as a practical tool for studying the behavior of nanofluids, which use aqueous suspensions based on nanoscale particles of silicon dioxide.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"